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Persistence of Hamiltonian relative periodic orbits
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Abstract

We prove a persistence result for Hamiltonian relative periodic orbits with generic drift–
momentum pairs in the case of non-compact non-free group actions. Our starting point is a relative
periodic orbit which is non-degenerate modulo isotropy. We show that the analysis of the persis-
tence problem involves the study of a singular algebraic variety, the space of drift–momentum pairs,
which is determined solely by the symmetry group of the problem. We apply our results to relative
periodic solutions of deformable bodies in fluids.
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1. Introduction

Relative periodic orbits are periodic solutions of a flow induced by an equivariant vector
field on a space of group orbits. In applications they typically appear as oscillations of a
system which are periodic when viewed in some rotating or translating frame. They there-
fore generalize relative equilibria, for which the ‘shape’ of the system remains constant
in an appropriate frame. Relative periodic orbits are ubiquitous in Hamiltonian systems
with symmetry. For example, generalizations of the Weinstein–Moser theorem show that
they are typically present near stable relative equilibria[22,28]and can therefore be found
in virtually any physical application with a continuous symmetry group. Specific exam-
ples for which relative periodic orbits have been discussed or could be found by applying
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the Weinstein–Moser theorem to stable relative equilibria include rigid bodies[1,21,24],
deformable bodies[23,41], molecules[16,18,34]and point vortices[27,31].

In contrast to the situation for general systems[40] so far there are only very partial
results on local bifurcation of relative periodic orbits of Hamiltonian systems. These are
described below. This is due to the fact that the conservation of momenta and symplectic
structure changes the generic behaviour dramatically and has to be taken into account.
Most persistence results for Hamiltonian relative periodic orbits which can be found in the
literature require compact symmetry groups and so do not apply when there are translational
symmetries present. This is frequently the case in applications, e.g. in the case of translating
bodies in fluids[21,41] and vortices[31]. So persistence and bifurcations of Hamiltonian
relative periodic orbits are still a long way from being well understood, especially in the
presence of non-compact symmetry groups.

In a Hamiltonian system without symmetry a periodic orbit is typically a non-degenerate
fixed point of the Poincaré map inside its energy level, which implies that periodic orbits
appear as one-parameter families parameterized by energy[2,25]. In the case of continuous
symmetries with corresponding conserved momenta we expect families of relative periodic
orbits to be parameterized by energy and conserved momenta. But a given relative periodic
orbit, even if it satisfies a non-degeneracy condition, may not persist to every momentum
value nearby, and the persistence problem for relative periodic orbits involves studying to
which nearby momentum values a non-degenerate relative periodic orbit persists.

Under a non-degeneracy assumption the following persistence results for Hamiltonian
relative periodic orbits have been obtained in the previous work. Montaldi[26] studied
persistence to nearby energy–momentum levels of Hamiltonian relative periodic orbits in the
case of free actions of compact symmetry groups. Ortega and Ratiu[29] proved a persistence
result for non-free group actions by applying[26] to the fixed point space of the isotropy
subgroup of the relative periodic orbit. These persistence results apply topological methods
which use the compactness of coadjoint group orbits and therefore do not apply when the
symmetry group is genuinely non-compact. The paper[41] presents a local description of
Hamiltonian vector fields near relative periodic orbits in the case of algebraic symmetry
groups. This description, which we summarize inSection 2, is used in[41] to deduce results
on persistence for non-degenerate relative periodic orbits of non-compact group actions with
regular momentum modulo isotropy. The local description of Wulff and Roberts[41] is also
used heavily in this paper.

If the non-degeneracy condition is dispensed with then the bifurcation results which are
available mainly deal with fixed points of equivariant symplectic maps[2,5,9,10]which
can be applied to the Poincaré map of a periodic orbit inside its energy level, thereby giving
bifurcation results for periodic orbits of Hamiltonian systems, see also[20].

The results of this paper are inspired by work on persistence of relative equilibria. For
free compact group actions, Patrick[30] proved that there is a manifold of relative equilib-
ria close to a given non-degenerate relative equilibrium if the velocity–momentum pair of
the relative equilibrium is regular. If the momentum of the relative equilibrium is regular,
then its velocity–momentum pair is also regular, but the latter condition is weaker. For
compact symmetry groupsG, Patrick and Roberts[32] show that under a generic transver-
sality assumption the analysis of the persistence problem of relative equilibria with general
velocity–momentum pairs reduces to the study of a singular algebraic variety, thespace
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of velocity–momentum pairs(g ⊕ g∗)c, whereg is the Lie algebra ofG andg∗ its dual.
This variety is determined solely by the symmetry of the system and so is independent of
the given Hamiltonian vector field. A generalization to generic velocity–momentum pairs
modulo isotropy and non-compact symmetries is presented in[39].

In this paper we extend the persistence results of Patrick[30] and Wulff [39] on non-
degenerate relative equilibria with velocity–momentum pairs which are regular modulo
isotropy to relative periodic orbits. We will introduce thespace of drift–momentum pairs
(G× g∗)c which takes the role of the space of velocity–momentum pairs of relative equi-
libria. Our results are new even for compact group actions, but, as in[40,41], we also
deal with non-compact symmetry groups which are algebraic. These are groups defined
by polynomial equations and include compact, Euclidean and the classical Lie groups, so
this assumption is usually satisfied in applications. We require the relative periodic orbit
to be non-degenerate modulo isotropy. This means that it is non-degenerate on the fixed
point space of the isotropy of the relative periodic orbit, seeSection 2.3. This assumption
is quite common in the literature as mentioned above. Our main theorem,Theorem 4.2,
treats persistence of non-degenerate relative periodic orbits with regular drift–momentum
pairs modulo isotropy to relative periodic orbits with the same spatio-temporal symmetry.
In addition, inTheorem 4.7, we give a result on persistence to relative periodic solutions
with smaller spatio-temporal symmetry.

The paper is organized as follows. InSection 2we introduce the setting that we work in
and recall the bundle construction near Hamiltonian relative periodic orbits of Wulff and
Roberts[41]. In Section 3we investigate the local structure of the variety(G × g∗)c near
regular drift–momentum pairs for general Lie groups. InSection 4we present our main
results, the persistence theorems mentioned above. InSection 5we apply our methods to
oscillations of a deformable body in an ideal fluid.

2. Hamiltonian relative periodic orbits

In this section we describe the setting that we work in and summarize the results of
Wulff and Roberts[41] on the bundle structure and differential equations near Hamiltonian
relative periodic orbits which we use in the following sections.

We consider a Hamiltonian system

ẋ = fH(x) (2.1)

on a finite-dimensional symplectic manifoldM with symplectic formω(·, ·):
ωx(fH(x), v) = DH(x)v, x ∈M, v ∈ TxM.

We assume that a finite-dimensional Lie groupG acts onM properly and symplectically
and that the HamiltonianH isG-invariant. This implies that(2.1) isG-equivariant, i.e.

fH(gx) = gfH(x), x ∈M, g ∈ G.
So wheneverx(t) is a solution of(2.1) then so isgx(t). We call the elements ofG the
symmetriesof (2.1). Let g denote the Lie algebra ofG. By Noether’s theorem locally there
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is a conserved quantityJξ for eachξ ∈ g such thatJξ is the Hamiltonian for the symplectic
flow x→ exp(ξt)x [1,24]. Moreover,Jξ is linear inξ, so thatJ maps to the dualg∗ of the
Lie algebrag of G. Let Adg, g ∈ G, denote the adjoint action ofG on g: Adg ξ = gξg−1,
ξ ∈ g, g ∈ G, and consider the coadjoint action ofG on g∗ given by

gµ = (Ad∗g)
−1µ, g ∈ G. (2.2)

We assume throughout the paper thatJ is defined on the whole ofM and isG-equivariant
with respect to theG-action onM and the coadjoint action ong∗. For symmetry reduction
in the case of only locally defined momentum maps or momentum maps which are not
equivariant with respect to the coadjoint action ong∗, see[37].

A pointp ∈M lies on a relative periodic orbit if there existst > 0 such thatΦt(p) ∈ Gp.
The infimumT of sucht is called therelative periodof the relative periodic orbit and the
elementσ ∈ G such thatΦT(p) = σp is called aphase-shift symmetry, reconstruction
phaseor drift symmetryof the relative periodic orbit. The relative periodic orbitP itself is
given by

P = {gΦθ(p), g ∈ G, θ ∈ R}.
We assume thatT > 0 so thatP is a proper relative periodic orbit (i.e. not a relative
equilibrium). We always reparameterize time such thatT = 1 and assume, without loss of
generality, thatH(p) = 0. Thespatio-temporal symmetry groupΣ of the relative periodic
orbit P with respect top is the set of all elementsg of G for which there existsθ(g) ∈
R such thatΦθ(g)(p) = gp. Its elements are called spatio-temporal symmetries ofP,
and it contains the isotropy subgroupGp = {g ∈ G,gp = p} of p ∈ P. In the whole
article we assume, as in[41], thatG is an algebraic Lie group, i.e. defined by algebraic
equations.

In this section we also assume that the isotropyGp of p ∈ P is finite. This simplifies the
bundle structure near relative periodic orbits and the form of Hamilton’s equations in these
coordinates considerably.

Remark 2.1. Even if the isotropy subgroupGp of the relative periodic orbitP (p =
σ−1Φ1(p) ∈ P) is not finite onM it is still finite on the flow-invariant symplectic manifold
M̂ := FixM(Ĝp), the fixed point space of̂Gp inM, whereĜp ⊂ Gp is a suitable subgroup
of the isotropy subgroupGp of p. The symmetry group acting on̂M isL := N(Ĝp)/Ĝp.
HereN(Ĝ) denotes the normalizer of a subgroupĜ of G.

We can always choosêGp such thatLp becomes finite by settinĝGp = Gp. Then the
action ofL nearp is locally free, i.e.Lp = {id}. We call subgroupŝGp of Gp with Lp is
finite regularsubgroups ofGp, seeDefinition 4.3and[39].

We will use this idea to apply persistence results for relative periodic orbits with finite
isotropy to the manifoldM̂ and in this way get persistence to relative periodic orbits with
isotropy containingĜp for Gp arbitrary whenever̂Gp is a regular subgroup ofGp. This
trick is quite common in the literature, see, e.g.[29,34,39,41]. For more details we refer to
Section 4.2.

We end this remark by showing how the drift symmetryσ and the momentumµ = J(p)
of a relative periodic orbitP containingp = σ−1Φ1(p) can be identified with elements
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Fig. 1. Coordinates near a periodic orbitP whereG = {id}. HereN andNθ are Poincaŕe sections toP atp and
Φθ(p), respectively.

of L and l∗, respectively. Herel denotes the Lie algebra ofL. It is easy to check that
the drift symmetryσ ∈ G of the relative periodic orbit lies inN(Gp) [40] and it is only
determined moduloGp, so that it can be identified withσL ∈ L. Embeddingl into g as
l � Fixg(Gp)∩g⊥p for aGp-invariant inner product ong we can identifyµwith an element
µL ∈ l∗ given byµL = µ|l.

2.1. Coordinates near Hamiltonian relative periodic orbits

Letp lie on a relative periodic orbitP of (2.1)with relative period 1, soΦ1(p) = σp for
someσ ∈ G. LetGµ be the momentum isotropy ofµ = J(p) with respect to the coadjoint
group action(2.2). For a setĜ ⊂ G let z(Ĝ) be the Lie algebra of the centralizerZ(Ĝ)
of Ĝ in G. By [42, Lemma 2.1]any relative periodic orbit of an algebraic group action
becomes periodic in a moving frame which respects the isotropy and preserves the momen-
tum of the relative periodic orbit. To be more precise, we can findξ ∈ gµ, α ∈ Gµ such
that

σ = αexp(ξ), Adα ξ = ξ, ξ ∈ z(Gp), ∃n ∈ N, αn = id. (2.3)

Sop lies on a periodic orbit with periodnwhen viewed in a frame moving with velocityξ. Let
Σn denote the compact group generated byα andGp. The groupΣn is the spatio-temporal
symmetry group of the relative periodic orbitP in a frame moving with velocityξ (and also
the spatio-temporal symmetry of the corresponding periodic orbit of the symmetry reduced
system, as we will see inSection 2.2). We haveΣn/Gp = Z

α
n.

The tangent spaceTpM at p ∈ P decomposes asTpM = T ⊕ N, whereN is a
Gp-invariant Poincaré section toP at p, i.e. aGp-invariant complement toT := TpP in
TpM. LetU be aG-invariant neighbourhood ofP inM. Then it is shown in[40,41], see
alsoFigs. 1 and 2, that we can write everyx ∈ U asx = (g, v, θ) whereg ∈ G, v ∈ N lies
in the Poincaré section transverse toP atp andθ ∈ R is the phase of the relative periodic
orbit and that these coordinates are unique moduloΣn, i.e.,

U ≡ (G× R/nZ×N )/Σn. (2.4)

The quotient byΣn is with respect to the following action ofΣn onG× R/nZ×N:

(gp, α
i)(g, θ, v) = (gα−ig−1

p , θ + i, gpQiNv) ∀gp ∈ Gp, i ∈ Zn, (2.5)

whereQN ∈ O(N ) has ordern.
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Fig. 2. Coordinates near a relative periodic orbitP, whereG �= {id}. HereN is a Poincaŕe section toP atp.

The symplectic structure of the tangent space decompositionTpM = T ⊕ N and the
bundle(2.4) is described in the following theorem.

Theorem 2.2 ([42, Theorem 3.1]). Letp = σ−1Φ1(p) ∈ P lie on a relative periodic orbit
of (2.1) and letGp be finite. Then there is a choice of Poincaré sectionN such that the
following hold true:

(a) The spacesT andN further decompose into

T = T0⊕ T1⊕ T2, N = N0⊕N1⊕N2,

where

T0 = gµp := TpGµp � gµ, T1 = gp ∩ (gµp)⊥ � g/gµ,

T2 = span(fH(p)) � R,

and

N0= ker DH(p) ∩ (ker DJ(p))⊥ ∩N � g∗µ,
N1= ker DH(p) ∩ ker DJ(p) ∩N,
N2= (ker DH(p))⊥ ∩ ker DJ(p) ∩N � R. (2.6)

Orthogonal complements are taken with respect to an appropriateGp-invariant inner
product onTpM. The spacesN0,N1 andN2 are allGp-invariant andT0⊕N0,N1, T1
andT2⊕N2 are symplectic subspaces ofTpM such that

ωp = ω|T0⊕N0 + ω|N1 + ω|T1 + ω|T2⊕N2.

The symplectic forms onT0⊕N0 andT2⊕N2 have standard forms in the chosen bundle
coordinates.

(b) Define aΣn-invariant symplectic form̃ω on Ũ := G × g∗µ × N1 × T∗(R/nZ), with
T ∗(R/nZ) = R/nZ×N2, by

ω̃ := ωG×g∗µ + ωN1 + ωT∗(R/nZ),
whereωG×g∗µ is the restriction of the standard symplectic form onT∗G = G × g∗ to
G×g∗µ with the embedding(2.9),ωN1 := ω|N1 andωT∗(R/nZ) is the standard symplectic
form onT∗(R/nZ). Then theG-reduced phase space

U/G ≡ (R/nZ×N )/Σn
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is a Poisson space with respect to the restricted Poisson bracket, and the identification
(2.4) is a symplectomorphism. Moreover, the actions ofGp andQN on N have the
forms:

gp(ν,w,E) = ((Ad∗gp)
−1ν, gpw,E) ∀gp ∈ Gp, (2.7)

and

QN(ν,w,E) = (Q0ν,Q1w,E) with Q0 = (Ad∗α)
−1. (2.8)

The linear mapQ1 : N1→ N1 is orthogonal with respect to the restrictedGp-invariant
inner product onN1, has ordern and is symplectic with respect to the restrictedGp-semi-
invariant symplectic formωN1.

The spaceN0 � g∗µ can be interpreted as the space of momenta in body coordinates.
It is a section transverse to the group orbitGµ ⊆ g∗ atµ, as we describe in more detail
in Lemma 3.7. To embedg∗µ into g∗ we choose aΣn-invariant complementnµ to gµ in g.
Then we can identify

g∗µ � ann(nµ), (g/gµ)∗ � ann(gµ) = TµGµ, (2.9)

where ann(nµ) and ann(gµ) denote the annihilators ofnµ andgµ in g∗. Moreover, since
Gp is finite the momentum level setJ−1(µ) ⊆M is a manifold nearp so thatN1 can be
interpreted as a Poincaré section transverse to the relative periodic orbitPµ = P∩ J−1(µ)

inside the energy–momentum level setJ−1(µ)∩H−1(p). Physically, it typically describes
shape vibrations. The parameterE ∈ N2 parameterizes the energy level sets. The variable
θ ∈ R/nZ is the phase of the relative periodic orbit[41].

Remark 2.3. As shown in[41], the tangent space decomposition ofTheorem 2.2(a) remains
true for continuous isotropy groupsGp if we now identifyT0 � gµ/gp andN0 � (gµ/gp)∗.
We will need this for the study of symmetry breaking bifurcations inSection 4.2. The
modifications ofTheorem 2.2(b) which are necessary in the case of continuous isotropy
groups are more complicated, see[41], and not needed in this paper.

2.2. Hamiltonian systems near relative periodic orbits

In this section we present the differential equations near a relative periodic orbitP ex-
pressed in the bundle coordinates that we introduced in the previous section. As we will see
they decompose the dynamics nearP into a periodically forced motion inside a Poincaré
section which drives the drift dynamics on the group.

To describe these differential equations we first introduce some more notation. We denote
the identity component of a subgroupG̃ of G by G̃id and say that an elementµ ∈ g∗ split
[14,36,41], σ-split for someσ ∈ Gµ, or stronglysplit, if the complementnµ to gµ in g can
be chosen to be invariant underGid

µ , Gid
µ and Ad∗σ orGµ, respectively. This is always the

case ifG is compact, but in general is not satisfied ifG is non-compact. An example is
provided by the Euclidean groupG = SE(3) of motions in three-space, see[36].
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Let Pann(gµ) be the projection fromg∗ to ann(gµ) with kernel ann(nµ) � g∗µ. Then for
anyξ ∈ gµ and any smallν ∈ ann(nµ) there is a uniqueη ∈ nµ such that

Pann(gµ)(ad∗ξ+η(µ+ ν)) = 0, (2.10)

as is shown in[37, Proposition 2.5]. Moreover,η = ηµ(ν)ξ is linear inξ. If µ is splitnµ can
be chosenGid

µ -invariant. Then ann(nµ) � g∗µ isGid
µ -invariant which implies thatη ≡ 0. For

every smallν ∈ ann(nµ) define the linear mapjµ(ν) from gµ to g asjµ(ν) = id + ηµ(ν).
We denote by Adµ and adµ the adjoint action ofGµ andgµ on gµ.

Let ĥ = ĥ(θ, ν, w,E) denote the lift of theG-invariant HamiltonianH back to the space
G × R/nZ × (N0 ⊕ N1 ⊕ N2) under the map given byTheorem 2.2. The functionĥ is
Σn-invariant:

ĥ(θ, (Ad∗gp)
−1ν, gpw,E) = ĥ(θ, ν, w,E) ∀gp ∈ Gp,

and

ĥ(θ + 1, (Ad∗α)
−1ν,Q1w,E) = ĥ(θ, ν, w,E).

In particular,ĥ is periodic inθwith periodn. We are now ready to formulate the Hamiltonian
system(2.1) in the bundle coordinates(2.4).

Theorem 2.4 ([42, Theorems 3.3 and 3.4]). Let p = σ−1Φ1(p) ∈ P lie on a relative
periodic orbitP with finite isotropy subgroupGp and letσ = αexp(ξ) as in(2.3). Assume
that time is parameterized so that the phase dynamics near the relative periodic orbit is
given byθ̇ ≡ 1. Then the Hamiltonian̂h in bundle coordinates is of the form

ĥ(θ, ν, w,E) = h(θ, ν,w)+ E (2.11)

for someΣn-invariant functionh onR/nZ× (N0⊕N1). We haveD(ν,w)h(θ,0,0) = (ξ,0)
and the differential equations for the motion in bundle coordinates

(g, θ, ν,w,E) ∈ G× R/nZ×N
have the form

ġ= gjµ(ν)Dνh(θ, ν,w),

ν̇= ad∗jµ(ν)Dνh(θ,ν,w)(ν + µ) = adµ,∗Dνh
ν + Pg∗µ(ad∗

η̂µ(θ,ν,w)
(ν)),

ẇ= JN1 Dwh(θ, ν,w),

Ė=−Dθh(θ, ν,w),

θ̇ = 1, (2.12)

whereη̂(θ, ν, w) = ηµ(ν)Dνh(θ, ν,w). Here adµ,∗χ , χ ∈ gµ, is the dual operator toadµχ
andPg∗µ the projection fromg∗ to ann(nµ) � g∗µ with kernelann(gµ).

Note thatµ+ν(t) is the momentum in a frame moving with velocityjµ(ν(t))Dνh(t, ν(t),
w(t)), so if (g(t), ν(t), w(t)) is a solution of(2.12) andg(0) = id, then the momentum
conservation in bundle coordinates reads

g(t)(µ+ ν(t)) = µ+ ν(0). (2.13)
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Eq. (2.12)without theg-equation are called thesymmetry reduced system. These equations
form aΣn-invariant periodically driven Poisson system on the Poincaré sectionN together
with the (trivial) phase dynamics ofθ. The relative periodic orbit becomes a periodic orbit
of the symmetry reduced system with spatio-temporal symmetry groupΣn. Any relative
periodic orbitP̂ close toP also becomes a periodic orbit of the symmetry reduced system,
and we say thatP andP̂ have thesame reduced spatio-temporal symmetryif P̂ corresponds
to a periodic solution with spatio-temporal symmetryΣn for the symmetry-reduced system
nearP. This doesnotnecessarily imply that the spatio-temporal symmetry groupsΣ andΣ̂
of P andP̂ coincide. For example forG = SO(2) it may happen thatP is a quasiperiodic
solution whereas rotational and relative periods ofP̂may be rationally dependent, so thatP̂
is fibered by periodic solutions. Note thatP andP̂ have the same reduced spatio-temporal
symmetry if and only ifP andP̂ have the same isotropy and the same relative period (where
we use the time-reparameterization ofTheorem 2.4).

2.3. Non-degenerate relative periodic orbits

In this section we introduce a non-degeneracy condition for relative periodic orbits which
we will use in our persistence results inSection 4. We will see that this non-degeneracy
assumption reduces the persistence problem to the study of the structure of a certain variety,
the space of drift–momentum pairs.

We are mainly interested in the persistence of a relative periodic orbitP to nearby relative
periodic orbits with the same reduced spatio-temporal symmetry, that is, the same isotropy
and the same relative period (with respect to the time parameterization ofTheorem 2.4),
and restrict to this case in this subsection. But inSection 4we will also consider persistence
to relative periodic orbits with smaller reduced spatio-temporal symmetry group. Since we
restrict attention to nearby relative periodic orbits with the same isotropy we can, without loss
of generality, assume thatGp is finite, for example by replacingM with M̂ = FixM(Gp),
cf. Remark 2.1.

Before we can define the notion of a non-degenerate relative periodic orbit we need
another proposition.

Proposition 2.5 ([42, Proposition 4.3]). Letp = σ−1Φ1(p) ∈ P, σ ∈ G, lie on a relative
periodic orbitP with finite isotropy subgroupGp and letB = σ−1 DΦ1(p). Let time be
reparameterized so thatθ̇ ≡ 1. Then:

(a) The mapB has the following structure with respect to the decompositionTpM = TpGp⊕
R⊕N:

B =




Ad−1
σ 0 D

0 1 0

0 0 BN


 . (2.14)

(b) Let v → ΦN1,0(v), v = (ν,w,E) ∈ N, be the time1 map of the periodically forced

system onN. Then0 is a fixed point of the mapQ−1
N Φ

N
1,0. The blockBN in (2.14)is the

linearization of this map, i.e.BN = Q−1
N DΦN1,0(0), and has the following block structure
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with respect to the decompositionN = N0⊕N1⊕N2:

BN =




Adµ,∗σ 0 0

B10 B1 0

0 0 1


 .

We are now ready to define what a non-degenerate relative periodic orbit is.

Definition 2.6. Let p = σ−1Φ1(p) lie on a relative periodic orbit with finite isotropy
subgroupGp. The relative periodic orbitP is non-degenerate modulo isotropyif B1 does
not have eigenvectors with eigenvalue 1. HereB1 is the block inB = σ−1 DΦ1(p)|FixM(Gp)
defined inProposition 2.5.

Remark 2.7. In Section 4.2we adapt the notion of non-degeneracy and the considerations
below to symmetry breaking bifurcations.

LetΨt,t0 be the time-evolution of the periodically forced differential equations onN0⊕N1,
that is, inside the energy level setE = H(p) of the Poincaré sectionN. LetQN0⊕N1 =
QN|N0⊕N1. Then 0 is a fixed point ofQ−1

N0⊕N1
Ψ1,0 and relative periodic orbits close toP

inM correspond to periodic points ofQ−1
N0⊕N1

Ψ1,0. WriteΨ1,0 = (Ψν1,0, Ψw1,0). As shown

in Proposition 2.5we haveQ−1
1 DΨw1,0(0) = B1, so, ifP is non-degenerate, we can solve

the equationQ−1
1 Ψw1,0(ν,w) = w uniquely forw(ν) ∈ N1 if ν ∈ N0 is small. Therefore the

problem of finding relative periodic orbits close toP inM with relative period close to 1
and same isotropy asP is equivalent to finding the solutions of the fixed point equation

Π(ν) = ν, whereΠ : FixN0(Gp)→ N0, Π(ν) = Ad∗α Ψ
ν
1,0(ν,w(ν)).

(2.15)

Here we used the block structure ofQN given in (2.8). If ν is any such fixed point
of Π then (ν,w(ν)) is a fixed point ofQ−1

N0⊕N1
Ψ1,0 with isotropy subgroupGp. Since

∂th(t, Ψ
ν
t,0, Ψ

w
t,0) = Dth(t, Ψνt,0, Ψ

w
t,0) for every trajectoryΨt,0(ν,w) of the periodically

forced(ν,w)-subsystem of(2.12)and since the Hamiltonian in bundle coordinatesh(θ, ν,w)

isΣn-invariant byTheorem 2.4, we get from theE-equation of(2.12)that

E(1)− E(0)=
∫ 1

0
Dth(t, Ψ

ν
t,0(ν,w(ν)), Ψ

w
t,0(ν,w(ν)))dt

= h(1,Q0ν,Q1w(ν))− h(0, ν, w(ν)) = 0.

Therefore the fixed point(ν,w(ν)) of Q−1
N0⊕N1

Ψ1,0 generates a one-parameter family

of fixed points ofQ−1
N Φ

N
1,0 parameterized by energyE. These fixed points lie on periodic

solutions of the periodically forced symmetry reduced system on the Poincaré sectionN.
Using again the bundleequation (2.12)we see that this one-parameter family of periodic
solutions on the Poincaré sectionN corresponds to a one-parameter family of relative
periodic solutions of the original system(2.1). This procedure is quite common[26,29,41]
and the same idea is used in the study of persistence of relative equilibria[29,34, 36,39].
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To analyse the properties of the mapΠ from (2.15)we need to describe the symplectic
leaves of the spaceN0 � g∗µ which is a Poisson space byTheorem 2.2. Since the Poisson
structure onN0 is in general not the standard Lie–Poisson structure unlessµ is split [36],
the symplectic leaves are in general not coadjoint orbits. To describe the symplectic leaves
we need one more notion. Letµ ∈ g∗. As in [39] we defineZ̃µ,ν, whereν ∈ ann(nµ) � g∗µ
is small, by the condition

g ∈ Z̃µ,ν ⇔ Pann(gµ)(Ad∗
g−1(µ+ ν)− µ) = 0 (2.16)

andZµ,ν to be the path connected component ofZ̃µ,ν containing the identity. Clearly,
Gid
µ+ν ⊆ Zµ,ν for everyν ∈ ann(nµ) andTidZµ,ν = jµ(ν)gµ.

Lemma 2.8. Let p = σ−1Φ1(p) ∈ P lie on a relative periodic orbit with finite isotropy
subgroupGp.

(a) The symplectic leaves ofN0 � g∗µ � ann(nµ) are given byL(ν) = Zµ,ν(µ+ ν)− µ.

If µ is split thenL(ν) = Gid
µν is a coadjoint orbit.

(b) The mapΠ from (2.15)is Poisson and has the form

Π(ν) = g(ν)(µ+ ν)− µ, g(ν) ∈ Z̃µ,ν (2.17)

with g : FixN0(Gp) → G smooth andg(0) = σ−1. If µ is strongly split andnµ is
chosen to beGµ-invariant theng(ν) ∈ Gµ so thatΠ(ν) = g(ν)ν.

Proof.

(a) The symplectic leaves ofg∗ are the coadjoint orbitsGid(µ+ ν). Onµ+ ann(nµ) they
restrict to the leavesZµ,ν(µ+ ν).

(b) Let g(t) = ΦGt (ν,w) denote the solution of theg-equation of(2.12)with initial value
(id, ν, w). Then the formula(2.13)for the momentumν(t) in the comoving frame, and
the definition(2.15)ofΠ imply (2.17)with g(ν) = (ΦG1 (ν,w(ν))α)−1. The rest of (b)
is clear. �

Let

π : G× g∗ → g∗, π(g, µ) = gµ, (2.18)

let Pg∗ : G× g∗ → g∗, Pg∗(g, ν) = ν, be the projection fromG× g∗ to g∗ and let

(G× g∗)c = (π − Pg∗)
−1(0) = {(g, µ) ∈ G× g∗, gµ = µ} (2.19)

be the set of elements ofG× g∗ which commute in the sense thatgµ = µ, or equivalently
π(g, µ) = µ. SinceG is an algebraic group this is in general a singularalgebraic variety.
The driftσ ∈ G of a relative periodic orbitP inM with momentumµ satisfiesσ ∈ Gµ so
that(σ, µ) ∈ (G × g∗)c. We therefore call(G × g∗)c thespace of drift–momentum pairs.
FromLemma 2.8we see that the mapΠ describing relative periodic orbits nearP and the
mapπ determining(G× g∗)c are related by

Π(ν) = π(g(ν), µ+ ν)− µ. (2.20)
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This is very similar to the situation for the set of non-degenerate relative equilibria which
is determined by the space of velocity–momentum pairs[32,39]given by the variety

(g⊕ g∗)c = T(id,0)(G× g∗)c.

The following proposition summarizes the relationship between solutions of(2.15)
and (2.20), and relative periodic orbits of(2.1).

Proposition 2.9. Letp lie on a relative periodic orbitP with finite isotropy subgroupGp
and energyH(p) = 0which is non-degenerate modulo isotropy. Then every relative periodic
orbit close toPwith isotropy subgroupGp and relative period1corresponds to a fixed point
ofΠ as defined in(2.15). Letν(λ),λ ∈ R

r, ν(0) = 0,be anr-dimensional solution manifold
of (2.15)and(2.20). Then there is an(r+ 1)-dimensional family of relative periodic orbits
P(λ,E) inM with isotropy subgroupGp, momentumJ(p(λ,E)) = µ+ ν(λ), p(λ,E) ∈
P(λ,E), relative period one(where time has been reparameterized such thatθ̇ ≡ 1) and
drift symmetryσ(λ,E), with σ(0,0) = σ, p(0,0) = p, P(0,0) = P. Moreoverp(λ,E)
andσ(λ,E) are parameterized smoothly byλ ∈ R

r and energyE. The manifoldMRPO in
M formed by this(r + 1)-dimensional family of relative periodic orbits has dimension

dimMRPO= dimG+ r + 2.

Remark 2.10. The above proposition deals with persistence to relative periodic orbits
with the same reduced spatio-temporal symmetry group, but the arguments can easily be
adapted to give persistence to relative periodic orbits with smaller reduced spatio-temporal
symmetry group. For details, seeSection 4.2.

We see that in order to obtain persistence results for non-degenerate relative periodic
orbits we need to understand the structure of the space of drift–momentum pairs(G×g∗)c.
In Section 3we study the variety(G × g∗)c near regular points. After that, inSection 4,
we solve(2.15) under a genericity assumption on the drift–momentum pair. In this way
we prove our main result,Theorem 4.2, on persistence of non-degenerate relative periodic
orbits with regular drift–momentum pairs.

3. Regular drift–momentum pairs

In this section we investigate the varietyV = (G × g∗)c of drift–momentum pairs
defined in(2.19). We introduce the notion of a regular drift–momentum pair, describe the
variety locally using a section transverse to the group orbit, and give sufficient conditions
for a drift–momentum pair to be regular. The results are analogous to results on the space
(g⊕ g∗)c of velocity–momentum pairs of relative equilibria of[32,39].

Let, as before,Z(g) be the centralizer ofg ∈ G. Define an action ofg ∈ G onσ ∈ G by
gσg−1 and letGσ = Z(σ) be the isotropy group ofσ with respect to this action ofG. The
following concepts generalize the notions of Patrick et al.[30,32,39]to relative periodic
orbits.
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Definition 3.1.

(a) We callµ ∈ g∗ regular (or minimal[36]) if its isotropy subgroupGµ for the coadjoint
action ofG on g∗ has minimal dimensionrµ(G).

(b) We callσ ∈ G regular(or minimal) if the dimensionrσ(G) of its isotropyGσ is locally
minimal.

(c) A pair (σ, µ) ∈ (G × g∗)c is calledregular if (G × g∗)c is a manifold near(σ, µ). In
this case letr = r(σ,µ)(G) be such that(G× g∗)c has dimension dim(σ,µ)(G× g∗)c =
dimG+ r near(σ, µ).

(d) Define aG-action onG× g∗ by

g(σ, µ) = (gσg−1, gµ), σ ∈ G, µ ∈ g∗, g ∈ G,
so thatG(σ,µ) = Gσ∩Gµ. A drift–momentum pair(σ, µ) ∈ (G×g∗)c is calledminimal
if dim G(σ,µ) is locally minimal in(G× g∗)c.

Remark 3.2. If (σ, µ) is a minimal drift–momentum pair thenσ is minimal inGµ and the
two conditions are equivalent ifµ isσ-split as we will see inProposition 3.11. In this propo-
sition we also show that minimality and regularity of a pair(σ, µ) ∈ (G×g∗)c are equivalent
if µ isσ-split. In particular, this is always true for compact groups, see alsoProposition 3.3.
In general the relation between minimality and regularity of drift–momentum pairs is
a non-trivial problem of algebraic geometry, as for velocity–momentum pairs(ξ, µ) ∈
(g⊕ g∗)c of relative equilibria[39], see alsoRemark 3.6(a) and (b).

3.1. Compact groups

In the case of a compact groupG the sets of regular elementsσ ∈ G,µ ∈ g∗ and(σ, µ) ∈
(G × g∗)c are easily classified. Recall that aCartan subgroupC(σ) of a compact group
G is a subgroup ofG which is generated by a single elementσ ∈ G and is not contained
properly in another group with this property. Elementsσ ∈ G generating a Cartan subgroup
are open and dense inG, and ifσ1, σ2 lie in the same connected component ofG then they
lie in conjugate Cartan subgroups[7]. A maximal torusT is a Cartan subgroupT = C(σ)
with σ ∈ Gid, and for anyσ ∈ G generating a Cartan subgroupC(σ) the identity component
C(σ)id of C(σ) is a maximal torus inZ(σ). We have the following proposition.

Proposition 3.3. In the case of a compact groupG a pair (σ, µ) ∈ (G× g∗)c is regular if
and only if it is minimal. Moreoverµ ∈ g∗ is minimal if and only ifgµ is the Lie algebra
of a maximal torus inG, andσ ∈ G and (σ, µ) ∈ (G × g∗)c are minimal if and only if
gσ andg(σ,µ) are Lie algebras of Cartan subgroups inG. Finally, if (σ, µ) is regular then
r(σ,µ)(G) = dim g(σ,µ).

Proof. From Patrick[30] and Wulff [39] we know thatµ ∈ g∗ is minimal if and only ifgµ
is the Lie algebra of a maximal torus ofG.

As mentioned above everyσ ∈ G is contained in a Cartan subgroupC. Then the Lie
algebrac of C is contained ingσ . As a consequencegσ has minimal dimension if and only
if c = gσ .
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Since for compact groups everyµ is strongly split it follows fromProposition 3.11(c)
that (σ, µ) ∈ (G × g∗)c is regular if and only if it is minimal. Let(σ, µ) ∈ (G × g∗)c be
arbitrary. Identifying adjoint and coadjoint actions and using thatσµ = µwe can identifyµ
with some element ofz(σ), and so there is a maximal torus inZ(σ)with Lie algebratσ such
thattσ ⊆ g(σ,µ). The Lie algebratσ is the Lie algebra of a Cartan subgroupC containingσ.
The proof now follows, as before, from the fact thatg(σ,µ) has locally minimal dimension
if and only if g(σ,µ) = tσ . �

3.2. Regularity and algebraic geometry

In this section we prove that regular elementsσ ∈ G, µ ∈ g∗ and(σ, µ) ∈ (G × g∗)c
are generic and thatrσ(G) is constant on connected components ofG (Proposition 3.5).
To do this we introduce some elementary real algebraic geometry. An (algebraic) variety
V ⊂ R

m is an algebraic set, i.e., a subset ofR
m defined by polynomial equationsf1(x) =

· · · = fn(x) = 0, wherex = (x1, . . . , xm) ∈ R
m andfi ∈ R[x], i = 1, . . . , n. We write

V = V(f). HereR[x] = R[x1, . . . , xm] denotes the ring of polynomials inm variables. An
algebraic variety is calledirreducibleif it is not a union of two different non-empty algebraic
varieties[4]. Recall that a setU ⊂ V is called Zariski-open ifV \U is an algebraic variety.
So we see that an algebraic varietyV is irreducible if any Zariski-open setsU1, U2 of V
intersect. As in[13] we call a pointp ∈ V regularor non-singular ifp is asmoothpoint of
V , that is,V is a manifold nearp, otherwisep is calledsingular. Smooth points of algebraic
varieties are open and dense[13, Theorem I.2.4].

We will need the following lemma on algebraic groups in the sequel.

Lemma 3.4 ([15, Theorem II.1.4]). LetG be algebraic. Then its irreducible components
are disjoint and are unions of connected components ofG.

We callξ ∈ g regular ifgξ has minimal dimension[30,39]and definerξ(G) = dim(gξ).
We are now ready to state the main result of this section.

Proposition 3.5.

(a) The set of regular elementsµ ∈ g∗ is open and dense ing∗.

(b) (i) The set of regular elementsσ ∈ G is open and dense inG.
(ii) Let σ be regular inG, r = rσ(G) and letσ̂ be a regular element ofσGid. Then

rσ̂(G) = r.
(iii) Letσ ∈ Gid be regular inG, and letξ ∈ g be regular. Thenrξ(G) = rσ(G).

(c) The set of regular pairs(σ, µ) ∈ (G× g∗)c is open and dense in(G× g∗)c.

Proof.

(a) Part (a) was proved by Duflo and Vergne, see[12].
(b) Part (b)(i) can be shown in the same way. Letσ ∈ G be regular,r = rσ(G), and let

Vσ be the irreducible component ofV = G containingσ. The condition dim(gσ̂ ) =
dim ker(Adσ̂ − id) > r is an algebraic condition on̂σ ∈ G since it is equivalent to
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the conditions that the determinants of all(r, r)-minors of the matrix Ad̂σ − id vanish.
Moreover, these conditions define a proper subset ofVσ which is a subvariety ofVσ .
So the complement of this subvariety is Zariski-open and, due to the irreducibility
of Vσ , open and dense inVσ . This proves (i). Part (ii) follows from the fact that by
Lemma 3.4the subvarietyVσ contains the connected componentσGid of σ inG. From
rξ(G) = rexp(ξ)(G) for ξ ∈ g small we obtain (iii).

(c) Part (c) follows from the corresponding statement[13, Theorem I.2.4]for general va-
rieties mentioned above. �

Note thatrσ(G) does depend on the connected component containingσ. Let for example,
G = O(2). Then forσ ∈ O(2) \ SO(2) we haverσ(G) = 0 and forσ ∈ SO(2) we have
rσ(G) = 1. By definition, minimal drift–momentum pairs are also open and dense in
(G× g∗)c. We conclude this section with the following remarks.

Remark 3.6.

(a) We call a pointp of an algebraic varietyV = V(f ) for a vector of polynomialsf
minimal (with respect tof ) if ker Df(p) has locally minimal dimension inV . If the
componentsfi, i = 1, . . . , n, of the vectorf = (f1, . . . , fn) of polynomials generate
the idealI(V) ⊆ R[x] of all polynomials which vanish onV then for everyp ∈ V
the dimension of ker D̂f(p), with f̂ = (f̂1, . . . , f̂n̂), f̂i ∈ I(V), i = 1, . . . , n̂, has a
minimum forf̂ = f , and in this case dim ker Df(p) is called theembedding dimension
edimp V of V atp [6]. For every smooth pointp we have edimp V ≥ dimpV , but in
general smooth points of varieties are not minimal, and equality does not in general
hold, even ifV is irreducible and thefi, i = 1, . . . , n, generateI(V), cf. [4, Example
3.3.11(b)].

Part (b) below shows that a drift–momentum pair(σ, µ) ∈ (G× g∗)c is minimal in
the sense ofDefinition 3.1if it is a minimal point of the varietyV(f) = (G× g∗)c with
respect tof = π − id with π from (2.18). This supplementsRemark 3.2.

(b) For(σ, µ) ∈ (G× g∗)c we have

dimG(σ,µ) + dimG = dim ker(Dπ(σ, µ)− Pg∗),

whereπ is from (2.18)andPg∗ : G × g∗ → g∗, Pg∗(σ, µ) = µ, is the projection of
(σ, µ) onto its second component.

Proof. Let (σ̂, µ̂) ∈ ker(Dπ(σ, µ) − Pg∗), and σ̂ = ξ̂σ, ξ̂ ∈ g. Then−ad∗
ξ̂
µ +

(Ad∗
σ−1 − id)µ̂ = 0. Hence(Ad∗

σ−1 − id)µ̂ ∈ gµ = TµGµ. Using the decomposition
g = gµ ⊕ nµ and the fact that ann(gµ) = gµ we can decomposeg∗ = gµ⊕ ann(nµ)
and therefore we can writêµ = ad∗η µ+ ν̂ with ν̂ ∈ ann(nµ) andη ∈ nµ. The condition
(Ad∗

σ−1 − id)µ̂ ∈ gµ is equivalent to(Ad∗
σ−1 − id)ν̂ ∈ gµ. Sinceσ ∈ Gµ we conclude

that Adσ mapsgµ into itself and so, the condition(Ad∗
σ−1 − id)ν̂ ∈ gµ is equivalent to

(Adµ,∗
σ−1 − id)ν̂ = 0. The proof now follows from the facts that dim ker(Adµ,∗

σ−1 − id) =
dim g(σ,µ), thatξ̂ is only determined modulogµ and that ad∗η µ ∈ ann(gµ) can be chosen
arbitrarily. �
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(c) In [4, Definition 3.3.1]points p ∈ V with edimp V = dimpV are called regular
(non-singular). From[4, Propositions 3.3.9 and 3.3.10, Example 3.3.11(b)]it follows
that this is a stronger condition than our notion of regularity.

(d) Thestratification theorem for algebraic varieties[4, Theorem 2.3.6; 13, Theorem I.2.7]
states that every algebraic variety can be decomposed into a finite number of submani-
folds, calledstrata, which are semi-algebraic sets, and that this decomposition is locally
finite and can be chosen to be Whitney-regular. This theorem is needed to develop a
persistence theory for relative periodic orbits with arbitrary drift–momentum pairs—an
open problem which is beyond the scope of this paper.

3.3. Local structure of the space of drift–momentum pairs

This section contains some technical lemmata which are needed later in the proofs. It can
be skipped at first reading.

The following two lemmata are needed to study the local structure of the space of
drift–momentum pairs. The first lemma shows thatg∗µ can be interpreted as a section trans-
verse to a coadjoint orbitGµ ⊂ g∗ atµ ∈ g∗.

Lemma 3.7 ([40, Lemma 2.1(a)]). Letµ ∈ g∗ andgµ ⊕ nµ = g. The spaceµ+ g∗µ with
g∗µ � ann(nµ) is a section transverse toGµ atµ. More precisely, there are neighbourhoods
U ofµ in g∗, UG(id) of id in G andUg∗µ(0) of 0 in g∗µ such that

for all µ̂ ∈ U there areg ∈ UG(id), ν ∈ Ug∗µ(0) such that̂µ = g(µ+ ν), (3.1)

and(g, ν) is locally unique modulo the action ofUG(id) ∩ Zµ,ν given by

gµ(g, ν) := (gg−1
µ , gµ ◦ ν), gµ ◦ ν := gµ(µ+ ν)− µ,

gµ ∈ UG(id) ∩ Zµ,ν. (3.2)

If µ is split thengµ ◦ ν = gµν. If we chooseg = exp(χ), whereχ ∈ nµ, χ ≈ 0, thenχ and
ν are locally unique.

In the following lemma we describe the setZ̃µ,ν defined in(2.16)in a neighbourhood of
σ ∈ Gµ for givenµ ∈ g∗ andν ∈ g∗µ. For any setA ⊆ G andσ ∈ A denote byAσ the
connected component ofA containingσ.

Lemma 3.8. Let (σ, µ) ∈ (G× g∗)c andgµ ⊕ nµ = g.

(a) Let UG(id) be a sufficiently small neighbourhood ofid in G andUG(σ) = σUG(id).
Then the set̃Zµ,ν∩UG(σ), whereν ∈ g∗µ � ann(nµ) is small, is a manifold of dimension
dimGµ. Moreover, there is a smooth functione(σ,µ) : Ugµ⊕g∗µ(0)→ UG(id) with

σe(σ,µ)(·, ν) ∈ Z̃µ,ν, e(σ,µ)(ξ,0) = exp(ξ) for all; ξ ∈ gµ,

which is defined by

e(σ,µ)(χ, ν) = exp(χ+ ηe(σ,µ)(χ, ν)).
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Hereηe(σ,µ) : gµ ⊕ g∗µ→ nµ is smooth in(σ, χ, ν) and satisfies

Pann(gµ)(σ exp(χ+ ηe(σ,µ)(χ, ν))(µ+ ν)− µ) = 0, (3.3)

and

ηe(σ,µ)(χ,0) = 0, Dχη
e
(id,µ)(χ, ν)|χ=0 = ηµ(ν). (3.4)

(b) If µ isσ-split andann(nµ) invariant underAd∗σ andGid
µ thenηe(σ,µ) ≡ 0ande(σ,µ)(·, ν) =

exp(·).
(c) IfK ⊆ Gµ is a subgroup ofGµ such thatnµ isK-invariant then forg ∈ K andgµ ∈ Z̃µ,ν

we have

(Z̃µ,ν)
ggµ = g(Z̃µ,ν)gµ, (3.5)

and forgµ ∈ Gµ we get

e(ggµ,µ)(χ, ν) = e(gµ,µ)(χ, ν). (3.6)

In particular, for σ = αexp(ξ) ∈ Gµ as in(2.3) this gives

e(σ,µ)(χ, ν) = e(exp(ξ),µ)(χ, ν). (3.7)

(d) If µ ∈ g∗ is regular thenZµ,ν = Gid
µ+ν is Abelian andgµ ◦ ν = ν for each small

ν ∈ ann(nµ) andgµ ∈ Zµ,ν.

Proof.

(a) Part (a) follows from the implicit function theorem applied toF(η, χ, ν) = 0 with F :
nµ ⊕ gµ ⊕ g∗µ→ gµ defined by

F(η, χ, ν) = Pann(gµ)(σ exp(χ+ η)(µ+ ν)− µ).
Here we use that DηF(0), given by DηF(0)η̂ = −Pann(gµ)Ad∗

σ−1 ad∗
η̂
µ, has image

im DηF(0) = Pann(gµ) Ad∗
σ−1 gµ = Pann(gµ)gµ = gµ and therefore full rank. The prop-

erties(3.4)of ηe(σ,µ) follow from the definition ofηe(σ,µ), see(3.3), and the definition of
ηµ, cf. (2.10).

(b) Is clear.
(c) To prove(3.5) and (3.6)applyg ∈ K ⊆ Gµ, to (3.3) and use thatPann(gµ) commutes

with g. Let σ = αexp(ξ) ∈ Gµ as in(2.3). Sincenµ is Adα-invariant we can deduce
(3.7) from (3.6).

(d) Letµ be minimal. ThenGµ̂ has locally constant dimension forµ̂ in a small neighbour-
hood ofµ in g∗, and therefore, sinceGid

µ+ν ⊆ Zµ,ν for ν ∈ ann(nµ) small, and since

both,Gid
µ+ν and by part (a) alsoZµ,ν, have dimension dimgµ, we getZµ,ν = Gid

µ+ν,
see also[33]. Hencegµ ◦ ν = ν for gµ ∈ Zµ,ν, ν ∈ ann(nµ) small. The fact that
thenGid

µ+ν is Abelian is due to Duflo and Vergne[12] and it is also a consequence of
the equality adµ,∗ξ ≡ 0 for ξ ∈ gµ which follows from differentiatinggµ ◦ ν = ν at
gµ = id. �
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Remark 3.9.

(a) The variety(G × g∗)c is invariant under theG-action(σ, µ)→ (gσg−1, gµ), g ∈ G,
and invariant under the transformation(σ, µ)→ (σ−1, µ).

(b) Note that with(σ, µ) ∈ (G × g∗)c also(Gµ,µ) ⊆ (G × g∗)c. Moreover,G(σ,µ) ⊆
(G × g∗)c and is disjoint from(Gµ,µ) if we replaceG by {exp(η), η ∈ Unµ(0)},
whereUnµ(0) is a sufficiently small neighbourhood of 0 innµ. Sincenµ has dimension
dimG− dimGµ we see thatr(σ,µ)(G) is the non-trivial term in the dimension formula
(seeDefinition 3.1(c))

dim(σ,µ)(G× g∗)c = r(σ,µ)(G)+ dimG.

We will make this interpretation ofr(σ,µ)(G) more precise in the next lemma.

The following technical lemma which analyses the local structure of the space of drift–
momentum pairs is analogous to the corresponding results of Patrick[30] and Wulff [39]
on velocity–momentum pairs(ξ, µ) ∈ (g⊕ g∗)c.

Lemma 3.10. Let (σ, µ) ∈ (G× g∗)c, g = gµ ⊕ nµ, and identifyg∗µ = ann(nµ).

(a) Using the sectionµ + g∗µ transverse toGµ at µ from Lemma 3.7we get the following
parameterization of(G×g∗)c in a neighbourhoodU(G×g∗)c(σ, µ) of (σ, µ) in (G×g∗)c:

U(G×g∗)c(σ, µ)= {g(σe(σ,µ)(χ, ν), µ+ ν), g ∈ UG(id),
(χ, ν) ∈ Ugµ⊕g∗µ(0) satisfiesπ(σ,µ)(χ, ν) = ν}.

HereUG(id),Ugµ⊕g∗µ(0) are neighbourhoods ofid inG, 0 in gµ⊕g∗µ, respectively,π(σ,µ)
is defined by

π(σ,µ) : gµ × g∗µ→ g∗µ, π(σ,µ)(χ, ν) = σe(σ,µ)(χ, ν)(µ+ ν)− µ, (3.8)

and(g, χ, ν) are locally unique modulo the action ofUG(id) ∩ Zµ,ν given by

gµ(g, χ, ν) := (gg−1
µ , gµ ◦(σ,µ,ν) χ, gµ ◦ ν), gµ ∈ UG(id) ∩ Zµ,ν, (3.9)

wheregµ ◦(σ,µ,ν) χ ∈ gµ is defined by the equation

gµσe(σ,µ)(χ, ν)g
−1
µ = σe(σ,µ)(gµ ◦(σ,µ,ν) χ, gµ ◦ ν),

Zµ,ν is as in(2.16), andgµ ◦ ν is given by(3.2). Moreover(π−Pg∗)−1(0) = (G× g∗)c
is locally a manifold near(σ, µ) ∈ (G×g∗)c if and only if(π(σ,µ)−Pg∗µ)

−1(0) is locally
a manifold near0. If µ is σ-split we have

gµ ◦ ν = gµν, gµ ◦(σ,µ,ν) χ = gµχ, π(σ,µ)(χ, ν) = σ exp(χ)ν. (3.10)

(b) Let(σ, µ) ∈ (G×g∗)c be regular and letr = r(σ,µ)(G) be such thatdim(σ,µ)(G×g∗)c =
r + dimG. Thenr ≤ rσ(Gµ) and near(χ, ν) = 0 the set(π(σ,µ) − Pg∗µ)

−1(0) can be
parameterized by(χ, ν(χ, λ)), where(χ, λ) lies in a neighbourhoodUgµ⊕Rr (0) of 0 in
gµ ⊕ R

r, ν : Ugµ⊕Rr (0) → g∗µ is smooth, ν(0) = 0, Dχν(0) = 0 and the columns of
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Dλν(0) span anr-dimensional subspace ofFixg∗µ(Adµ,∗σ ). If µ is σ-split thenν(χ, λ) is
linear in λ andr = rσ(Gµ).

Proof. (a) follows fromLemmas 3.7 and 3.8. To prove part (b) let(σ, µ) ∈ (G × g∗)c be
regular withr = r(σ,µ)(G). Then by part (a)(π(σ,µ)−Pg∗µ)

−1(0) ⊆ gµ⊕g∗µ is a manifold near

0 with dim0(π(σ,µ) − Pg∗µ)
−1(0) = r+ dim gµ. Since(π(σ,µ) − Pg∗µ)

−1(0) clearly contains

the vectorspacegµ ⊕ {0} ⊆ gµ ⊕ g∗µ we can locally parameterize(π(σ,µ) − Pg∗µ)
−1(0) as

(χ, ν(χ, λ)), whereχ ∈ gµ andλ ∈ R
r are small,ν(0) = 0, Dχν(0) = 0, and the rank of

Dλν(0) isr. Differentiating(π(σ,µ)−Pg∗µ)(χ, ν(χ, λ)) = 0 at 0 we get(Adµ,∗
σ−1−id)Dλν(0) =

0. As a consequencer ≤ dim ker(Adµ,∗
σ−1 − id) = dim g(σ,µ). The last statement follows

from the fact that ifµ is σ-split then(3.10)holds. �

3.4. Sufficient conditions for regularity

In the following proposition we present some sufficient conditions for the regularity
of drift–momentum pairs which are easy to check. In particular, we show that regular-
ity of the momentum or the drift symmetry imply the regularity of the drift–momentum
pairs. The results are similar to the case of velocity–momentum pairs of relative equilibria
[30,39].

Proposition 3.11.

(a) Ifµ ∈ g∗ is regular then(σ, µ) is regular and minimal for everyσ ∈ Gµ,andr(σ,µ)(G) =
dim g(σ,µ) = dim g(α,µ), whereσ = αexp(ξ) as in(2.3).

(b) If σ ∈ G is regular inG then(σ, µ) ∈ (G × g∗)c is regular and minimal for every
µ ∈ g∗ with Ad∗σ µ = µ, andrσ(G) = dim g(σ,µ) = r(σ,µ)(G).

(c) If µ is σ-split andnµ is chosen to be invariant underGid
µ andAdσ (whereσ ∈ Gµ)

then the following conditions are equivalent:
(i) σ is regular inGµ;

(ii) (σ, µ) ∈ (G× g∗)c is regular;
(iii) (σ, µ) ∈ (G× g∗)c is minimal.

Moreover, if µ is σ-split and(σ, µ) regular thenr(σ,µ)(G) = dim g(σ,µ).
(d) With (σ, µ) ∈ (G× g∗)c also(σ−1, µ) is regular andr(σ,µ)(G) = r(σ−1,µ)(G).

Proof.

(a) Ifµ is minimal then from(3.5), (3.7) and (3.8)andLemma 3.8(d) we getπ(σ,µ)(χ, ν) =
αν. So close to(σ, µ) the variety(G× g∗)c has dimension

dim(σ,µ)(G× g∗)c = dim g(α,µ) + dimG.

SinceGid
µ is Abelian forµ minimal by Lemma 3.8(d) we have Adexp(ξ) χ = χ for

eachχ ∈ gµ and thereforeg(σ,µ) = g(α,µ). This shows that for everyσ ∈ Gµ the
drift–momentum pair(σ, µ) ∈ (G × g∗)c is regular withr(σ,µ)(G) = dim g(σ,µ).
Since drift–momentum pairs(σ̂, µ̂) ∈ (G × g∗)c close to(σ, µ) are also regular with
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r(σ̂,µ̂)(G) = r(σ,µ)(G) = dim g(σ,µ) and byLemma 3.10(b) we have dimg(σ,µ) =
r(σ̂,µ̂)(G) ≤ dim g(σ̂,µ̂) we conclude that(σ, µ) is also minimal.

(b) If σ is minimal thenGσ̂ has locally constant dimension forσ̂ in a small neighbourhood
of σ in G. So close to{σ} × Fixg∗(Ad∗σ) ⊆ (G × g∗)c the variety(G × g∗)c is a
trivial bundle with fibre Fixg∗(Ad∗

σ̂
) isomorphic to Fixg∗(Ad∗σ) over a neighbourhood

σ̂ ≈ σ of σ in G, and the dimension of(G × g∗)c near{σ} × Fixg∗(Ad∗σ) is therefore
dimG+dimGσ . This shows that for everyµ ∈ g∗with Ad∗σ µ = µ the drift–momentum
pair(σ, µ) ∈ (G×g∗)c is regular withr(σ,µ)(G) = rσ(G). Sincer(σ,µ)(G) ≤ dim g(σ,µ)
by Lemma 3.10(b) and dimg(σ,µ) ≤ rσ(G) = dim gσ we haver(σ,µ)(G) = dim g(σ,µ).

(c) If µ is σ-split then by(3.10)we haveπ(σ,µ)(χ, ν) = σ exp(χ)ν whereν ∈ g∗µ, χ ∈ gµ.
We first show that (i) implies (ii). Letσ be minimal inGµ. From part (b) we see that(σ,0)
is a regular point of(Gµ × g∗µ)c with r(σ,0)(Gµ) = dim g(σ,µ). FromLemma 3.10(a)
we conclude that(σ, µ) is a regular point of(G× g∗)c with r(σ,µ)(G) = dim g(σ,µ).

Now we show that (ii) implies (iii). Ifµ is σ-split and(σ, µ) a regular point of
(G × g∗)c with dim(σ,µ)(G × g∗)c = dimG + r then byLemma 3.10(b) the variety
(Gµ × g∗µ)c is a manifold near(σ,0) ∈ (Gµ × g∗µ)c of dimensionr + dimGµ with
r = rσ(Gµ) = dim g(σ,µ). Now let(σ̂, µ̂) ∈ (G×g∗)c be close to(σ, µ). Since(G×g∗)c
is a manifold near(σ, µ) we know thatr(σ̂,µ̂)(G) = r, with r = dim g(σ,µ). By Lemma
3.10(b) we moreover haver(σ̂,µ̂)(G) ≤ dim g(σ̂,µ̂). Hence dimg(σ,µ) ≤ dim g(σ̂,µ̂) so
that(σ, µ) is minimal.

Finally we show that (iii) implies (i). If(σ, µ) is a minimal drift–momentum pair
then dimg(σ̂,µ) = dim g(σ,µ) for σ̂ ∈ Gµ close toσ, so thatσ is minimal inGµ.

(d) Let (σ, µ) ∈ (G × g∗)c be regular. Then byLemma 3.10(b) the variety(G × g∗)c
can be smoothly parameterized asg(σ(χ, λ), µ(χ, λ)), whereλ ∈ R

r, r = r(σ,µ)(G),
g ∈ G, σ(χ, λ) = σe(σ,µ)(χ, ν(χ, λ)), andµ(χ, λ) = µ + ν(χ, λ). Since byRemark
3.9(a) with any(σ, µ) also(σ−1, µ) ∈ (G× g∗)c we see that near(σ−1, µ) the variety
(G×g∗)c is parameterized smoothly byg((σ(χ, λ))−1, µ(χ, λ)). So(σ−1, µ) is regular
andr(σ−1,µ)(G) = r(σ,µ)(G). �

4. Persistence of relative periodic orbits

In Section 4.1we present our main result,Theorem 4.2, on persistence of non-degenerate
relative periodic orbits with drift–momentum pairs which are regular modulo isotropy to
relative periodic orbits with the same reduced spatio-temporal symmetry group. This ex-
tends results of Patrick et al.[30,32,39]on relative equilibria to relative periodic orbits.
Afterwards, inSection 4.2, we consider persistence to relative periodic orbits with smaller
reduced spatio-temporal symmetry group.

4.1. Symmetry preserving persistence

In this section we present our main result, a persistence result for relative periodic orbits
which are non-degenerate and have regular drift–momentum pairs modulo isotropy. First
we define what we mean by a regular drift–momentum pair modulo isotropy.
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Definition 4.1. Letp ∈ P lie on a relative periodic orbit of(2.1)with momentumµ = J(p),
drift symmetryσ ∈ Gµ, and isotropy subgroupGp, letL = N(Gp)/Gp be the symmetry
group acting on the fixed point space FixM(Gp) and letl denote the Lie algebra ofL. Let
µL = µ|l, where we considerl asΣn-invariant subspace ofg, seeRemark 2.1, and letσL ∈ L
representσ ∈ G. We say thatP hasregular drift–momentum pair(regular drift, regular
momentum) modulo isotropyif (σL , µL) ∈ (L× l∗)c is regular (σL ∈ L is regular,µ ∈ l∗
is regular) in which case we definer(σ,µ)(Gp,G) := r(σL ,µL )(L) (rσ(Gp,G) := rσL (L),
rµ(Gp,G) := rµL (L)).

Propositions 3.3 and 3.11can be used, withG replaced byL, to computer(σL ,µL )(L),
rσL (L) andrµL (L). Now we can formulate a persistence result for relative periodic orbits
with regular drift–momentum pairs modulo isotropy.

Theorem 4.2. Let p = σ−1Φ1(p) lie on a relative periodic orbitP of (2.1) which is
non-degenerate and has regular drift–momentum pair(σ, µ) modulo isotropy and energy
H(p) = 0. Then the following statements hold true:

(a) Let r = r(σ,µ)(Gp,G). Then there is an(r + 1)-dimensional smooth family of relative
periodic orbitsP(λ,E), parameterized byλ ∈ R

r and energyE, with isotropy sub-
groupGp, relative period close to1, drift symmetryσ(λ,E) close toσ and momentum
µ(λ,E) = J(p(λ,E)), p(λ,E) ∈ P(λ,E), close toµ such thatp(0) = p, P(0) = P,
σ(0) = σ, µ(0) = µ, and there are no other relative periodic orbits with the same
isotropy and relative period≈ 1 nearP.

(b) LetMRPO be the submanifold ofM formed by the relative periodic orbits from(a)
and letMRPO(Gp) = FixMRPO(Gp). ThenMRPO(Gp) is a symplectic submanifold of
FixM(Gp) if and only ifµL is minimal inl∗ andl(σL ,µL ) = lµL .

(c) The submanifoldMRPO ofM is symplectic if and only if the assumptions of(b) hold
and the momentum isotropy algebragµ of the relative periodic orbit lies in the Lie
algebraLN(Gp) of the normalizerN(Gp) of Gp: gµ ⊆ LN(Gp). In this case there
is a relative periodic orbit for any energy–momentum pair(Ê, µ̂) ∈ R ⊕ g∗ close to
(0, µ).

Proof.

(a) For simplicity, replaceM by FixM(Gp) so thatG andL coincide. ByProposition 2.9
the persistence problem reduces to solving the fixed point equationΠ(ν) = ν on g∗µ,
whereΠ(ν) is from(2.15). ByLemma 2.8we can writeΠ(ν)asΠ(ν) = g(ν)(ν+µ)−µ,
whereg(ν) ∈ Z̃µ,ν andg(ν) ≈ σ−1 for ν small. Note that with(σ, µ) ∈ (G× g∗)c also
(σ−1, µ) ∈ (G×g∗)c is regular byProposition 3.11(d). ByLemma 3.8(a) there is some
ξ(ν) ≈ 0 with g(ν) = σ−1e(σ−1,µ)(ξ(ν), ν) andξ(ν) is smooth inν. So we haveΠ(ν) =
π(σ−1,µ)(ξ(ν), ν), whereπ(σ−1,µ) is from (3.8). Lemma 3.10(b) implies that for each
smallχ there is anr-dimensional manifoldν(χ, λ) of solutions toπ(σ−1,µ)(χ, ν) = ν.
Since Dχν(0) = 0 byLemma 3.10(b) the equation

χ = ξ(ν(χ, λ))
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can be solved forχ(λ). This gives anr-dimensional familyν(λ) := ν(χ(λ), λ) of (2.15)
and withProposition 2.9proves (a).

(b) To simplify notation replaceM by FixM(Gp) andG by L so thatGp is trivial. By
the tangent space decomposition ofTheorem 2.2(a) we haveTpM = T ⊕ N, with
T = T0 ⊕ T1 ⊕ T2, N = N0 ⊕N1 ⊕N2, whereT0 ⊕ T1 � g, T1 � g/gµ, T0 � gµ,
N0 � g∗µ andT2⊕N2,N1 andT0⊕N0 are symplectic. So we get

TpMRPO� T0⊕ T1⊕ T2⊕
(

id
Dw(0)

)
Im Dν(0)⊕N2, (4.1)

where we used bundle coordinates on the right-hand side and Im Dν(0) denotes the
image of Dν(0) in N0 � g∗µ. Since Im Dν(0) ⊆ Fixg∗µ(Adµ,∗σ ) by Lemma 3.10(b) and
sinceT1,N1, T0 ⊕N0 andT2 ⊕N2 are symplectic, the last two spaces with standard
symplectic form (byTheorem 2.2(a)) the spaceTpMRPO is symplectic if and only if
g∗µ = Fixg∗µ(Adµ,∗σ ) = Im Dν(0). These equalities hold if and only ifg(σ,µ) = gµ and
r = dim gµ. Let (σ̂, µ̂) ∈ (G × g∗)c be close to(σ, µ). By Lemma 3.10(b) we have
r(σ̂,µ̂)(G) ≤ rσ̂(Gµ̂). Sincer = r(σ̂,µ̂)(G) andrσ̂(Gµ̂) ≤ dim gµ̂ we get dimgµ ≤
dim gµ̂. This implies thatµ is minimal ing∗.

(c) If the isotropy groupGp is continuous then(4.1) remains valid, and byRemark 2.3
the spaceT0 ⊕ N0 is still a symplectic space, but now we haveT0 � (gµ/gp) and
N0 � (gµ/gp)∗. As in part (b) we know that Im Dν(0) ⊆ l∗µ � FixN0(Gp) ⊆ N0.
ForMRPO to be symplectic the former two inclusions need to be equalities. We have
Im Dν(0) = l∗µ if and only if the assumptions in part (b) are satisfied. Moreover, the
condition(gµ/gp)∗ = Fix(gµ/gp)∗(Gp) is satisfied if and only ifgµ ⊆ LN(Gp). �

4.2. Symmetry breaking persistence

In this section we treat persistence to relative periodic orbits with smaller reduced
spatio-temporal symmetry group. We allow the bifurcating relative periodic orbit to have
a smaller isotropy group, which is aregular subgroupof the isotropy group of the origi-
nal relative periodic orbit (as defined inDefinition 4.3), and we allow for relative period
multiplying.

Letp = σ−1Φ1(p) ∈ P lie on a relative periodic orbit of(2.1)with momentumµ = J(p),
drift symmetryσ ∈ Gµ, and isotropy subgroupGp.

Definition 4.3 (cf. [40, Definition 7.1]). The subgroup̂Gp of Gp is aregularsubgroup of
Gp if the following implication holds:

χ ∈ z(Ĝp) ∩ gp ⇒ χ ∈ ĝp.

Choose a regular subgroup̂Gp of Gp. To study persistence to relative periodic orbits with
isotropy containingĜp we restrict, as inRemark 2.1, the dynamics to the flow-invariant
symplectic manifoldM̂ := FixM(Ĝp). The symmetry group acting on the fixed point
spaceM̂ = FixM(Ĝp) isL = N(Ĝp)/Ĝp. As before denote the Lie algebra ofL by l. The
fact thatĜp is a regular subgroup ofGp means thatLp is finite. Therefore,Theorem 2.2
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on the bundle structure of a neighbourhood of a relative periodic orbit can be applied to
M̂. The drift symmetryσ of our relative periodic orbitP may not necessarily lie inL (for
an example, seeSection 5.3), and even if it does, it may not respect the symmetries inĜp.
We therefore may have to replaceσ by another spatio-temporal symmetry ofP which lies
in L. This might increase the relative period. Spatio-temporal symmetries ofP which fit to
the subgroup̂Gp are calledĜp-admissibleas detailed in the following definition.

Definition 4.4. Let p = σ−1Φ1(p) ∈ P, µ = J(p) and letĜp be a subgroup ofGp. We
say that the spatio-temporal symmetryσ̂ = σ8gp ∈ Σ, 8 ∈ N, gp ∈ Gp, ofP (with respect
to p) is Ĝp-admissibleif σ̂ ∈ N(Ĝp).

Note that every elementσ8gp, 8 ∈ N, gp ∈ Gp, of the spatio-temporal symmetry group
Σ ofP (with respect top) isGp-admissible and thatσn isĜp-admissible for every subgroup
Ĝp of Gp wheren ∈ N is such thatαn = id, see(2.3). The next definition introduces the
notion of non-degeneracy modulôGp.

Definition 4.5. Let P be a relative periodic orbit containingp = σ−1Φ1(p), let Ĝp be
a regular subgroup ofGp and let σ̂ = σ8gp be aĜp-admissible drift symmetry ofP,
where8 ∈ N, gp ∈ Gp. ThenP is called non-degenerate moduloĜp, when considered
as relative periodic orbit of relative period8 and with drift symmetryσ̂, if g−1

p B
8
1 does

not have eigenvectors with eigenvalue 1 which lie in FixN1(Ĝp). HereB1 is the block in
B = σ−1 DΦ1(p) defined inProposition 2.5.

Now we introduce the notion of drift–momentum pairs which are regular moduloĜp by
extendingDefinition 4.1.

Definition 4.6. Let P, µ, σ, Ĝp andL = N(Ĝp)/Ĝp be as above. Let̂σ = σ8gp, where
8 ∈ N, gp ∈ Gp, be aĜp-admissible drift symmetry ofP. Identify σ̂ with σ̂L ∈ L and let
µL = µ|l where we embedl into g as described inRemark 2.1.

We say that the drift–momentum pair(σ̂, µ) (the drift σ̂, the momentumµ) of P when
considered as relative periodic orbit of relative period8 and with drift symmetrŷσ is regular
moduloĜp if (σ̂L , µL) ∈ (L × l∗)c is regular (̂σL ∈ L is regular,µL ∈ l∗ is regular) in
which case we definer(σ̂,µ)(Ĝp,G) := r(σ̂L ,µL )(L) (rσ̂(Ĝp,G) := rσ̂L (L), rµ(Ĝp,G) :=
rµL (L)).

We are now ready to state our result on symmetry breaking persistence.

Theorem 4.7. Letp = σ−1Φ1(p) lie on a relative periodic orbitP of (2.1)with momentum
µ = J(p) and energyH(p) = 0.LetĜp be a regular subgroup ofGp and assume that̂σ =
σ8gp is Ĝp-admissible where8 ∈ N, gp ∈ Gp. Assume thatP is non-degenerate modulo
Ĝp when considered as relative periodic orbit of relative period8 with drift-symmetryσ̂
and that(σ̂, µ) is a drift–momentum pair which is regular moduloĜp. Then the following
statements hold true:
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(a) Letr = r(σ̂,µ)(Ĝp,G). There is an(r+1)-dimensional smoothly parameterized family

of relative periodic orbitsP(λ,E),λ ∈ R
r, with isotropy containinĝGp, relative period

dividing 8 (using the time-reparameterization ofTheorem 2.4), and drift–momentum
pair close to(σ̂, µ) nearP(0) = P and there are no other relative periodic orbits with
this property nearP.

(b) LetMRPObe the submanifold ofM formed by the family of relative periodic orbits of
(a)and letMRPO(Ĝp) := FixMRPO(Ĝp).ThenMRPO(Ĝp) is a symplectic submanifold
of FixM(Ĝp) if and only ifµL is minimal inl∗ andl(σ̂L ,µL ) = lµL .

(c) The manifoldMRPO⊆M is symplectic if and only if the assumptions of(b) hold and
gµ ⊆ LN(Ĝp).

Proof. The regularity assumption on̂Gp implies thatLp is finite so thatTheorems 2.2
and 2.4on the bundle structure near relative periodic orbits and Hamilton’s equations in
bundle coordinates can be applied onM̂ := FixM(Ĝp). The equation determining relative
periodic orbits nearp ∈ P in M̂ therefore has the form(2.15). We treatP as a relative
periodic orbit onM̂ with drift symmetryσ̂L ∈ L and relative period8. The mapΠ from
(2.15) has to be modified accordingly:α has to be replaced byα8gp andΨ1,0 by Ψ8,0.
Proposition 2.9then still applies to this case of broken spatio-temporal symmetry, and
makes the proof of the theorem analogous to the proof ofTheorem 4.2. �

Remark 4.8.

(a) The assumptions ofTheorem 4.7(b) are satisfied ifµ is minimal in l∗, gp = id and
8 = n, where we decomposeσ = αexp(ξ) with αn = id as in(2.3). This special case
was treated in[42, Corollary 4.8].

(b) [42, Theorem 4.9]is a special case ofTheorem 4.7, whereGp is finite andµ is split
and minimal moduloĜp.

(c) Theorem 4.7is similar to [40, Theorem 7.2]on symmetry breaking persistence of
relative equilibria.

The following example is a simple illustration howTheorem 4.7can be applied. For more
examples, seeSection 5.

Example 4.9. Let G = O(2). Then everyµ ∈ g∗ is minimal. A non-degenerate relative
periodic orbitPwith momentumµ = 0, zero energy and drift symmetryσ ∈ O(2) \SO(2)
is a discrete rotating wave which is isolated in momentum space. IfP is non-degenerate as
2-periodic solution then byTheorem 4.7it persists as modulated rotating wave with relative
period close to 2 for every small energy–momentum pair(E,µ) �= 0.

5. Application: oscillations of a deformable body in a fluid

In this section we illustrate how to apply the results of this paper to a specific symmetric
Hamiltonian system. As our example we have chosen, as in[41], a finite dimensional model
for the dynamics of a deformable body in an ideal irrotational fluid. The model extends the
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well known Kirchhoff model for the motion of a rigid body in a fluid[3,17,19]and the
‘affine’ or ‘pseudo’-rigid body model used in elasticity theory[8,11,35,38].

We allow configurations that are obtained from orientation and volume preserving linear
deformations and translations of a reference body. The configuration space for this system
is therefore the special affine group SAff(3) = SL(3)�R

3 of R
3, where SL(3) is the group

of invertible linear transformations ofR3 with determinant 1 and the semi-direct product
is obtained from the natural action of SL(3) on R

3. The dynamics of the system are given
by a HamiltonianH on the phase spaceT∗ SAff (3). We assume that the reference body is
a sphere. Then the deformed configurations are always ellipsoids.

5.1. Symmetries and conserved quantities

Since the reference body is spherically symmetric the HamiltonianH is invariant under
the action of SO(3) onT ∗ SAff (3) which is induced from its natural action on the right of
SL(3) (extended trivially to SAff(3)):

B · (S, s) = (SB−1, s), (S, s) ∈ SAff (3), B ∈ SO(3).

These are the ‘material’ or ‘body’ symmetries of the system. We also assume that the
system is invariant under rotations and translations ofR

3, i.e. the natural action of SE(3)
onT ∗ SAff (3) induced from its action on the left of SAff(3):

(A, a) · (S, s) = (AS, a+ As), (S, s) ∈ SAff (3), (A, a) ∈ SE(3) = SO(3)� R
3.

These are the ‘spatial’ symmetries of the system. This assumption implies that there are
no external forces such as gravity acting. In particular, the body is ‘neutrally buoyant’ and
has coincident centres of mass and buoyancy. It is natural also to assume that the system
is invariant under the action of the inversion symmetry−id in O(3) acting simultaneously
on the left and right of SAff(3). Denoting the diagonally embedded inversion operator in
O(3)×O(3) by κ we have:

κ · (S, s) = (S,−s), (S, s) ∈ SAff (3), κ = (−id,−id) ∈ O(3)×O(3).

Note that the action of−id on the left or right alone does not preserve SAff(3). Together
the body and spatial symmetries and reflectionκ generate a semi-direct product

G = Z
κ
2 � (SE(3)L × SO(3)R)

(here the indices L and R stand for left and right actions, respectively). This group is the
symmetry group of the system.

5.2. Spherical equilibrium and non-linear normal modes

Assume, as in[41], that the spherical configuration with zero momentumpe = ((id,0),
(0,0)) in SAff (3)×saff(3)∗ is an equilibrium configuration. This has conserved momentum
µ = 0 and its isotropy subgroup isGp = O(3)D, where O(3)D = Z

κ
2 × SO(3)D and

SO(3)D = {((g,0), g) ∈ SE(3)L ×SO(3)R : g ∈ SO(3)} is the diagonally embedded copy
of SO(3) in SE(3)L × SO(3)R.
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Fig. 3. Ellipsoidal oscillating normal mode.

In [41] it is shown that near a non-degenerate spherical equilibriumpe atµe = 0 there
are three families of periodic solutions (non-linear normal modes), two of them with finite
isotropy. One of the periodic solutions with finite isotropy is a ‘cubic’ normal modewith
symmetry pair(Σn,Gp) isomorphic to

(Σn,Gp) = (T× Z
κ
2,D2× Z

κ
2), n = 3.

HereD2 is the subgroup of SO(3)D consisting of rotations byπ about each of three mutually
perpendicular axes. The groupT is the subgroup of order 12 in SO(3)D consisting of all
rotations which preserve a tetrahedron. It can be generated byD2 together with an element
α of order 3 corresponding to a rotation by 2π/3 about a diagonal of the cube, seeFig. 3.
The drift symmetryσ of the non-linear normal mode isσ = α and hence satisfiesn = 3.

This periodic solution has momentumµ = 0 and can be described as a ‘pulsating cube’.
At all times the body is ellipsoidal (which is whyGp always containsD2 × Z

κ
2) and its

principal axes have fixed directions in both body and space. However the lengths of the
principal axes vary periodically, and the role of the longest principal axis is taken by each
of the three in turn, with a 2π/3 phase-shift between them, seeFig. 4. The spatio-temporal
symmetryσ corresponds to rotating the body by 2π/3 about an axis trisecting the three
principal axes.

Fig. 4. Spatio-temporal symmetryσ of the pulsating cube normal mode.
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Fig. 5. Pulsating cube RPOs of Type 1.

5.3. Relative periodic orbits

Let τ be a rotation byπ in D2 = SO(3)D ∩Gp. In [41] it is shown, using the persistence
result [42, Theorem 4.9](see alsoRemark 4.8(b)) for minimal momenta modulôGp for
the subgroupĜp := Z

τ
2 of Gp that the normal modeP perturbs to a four-dimensional

family of relative periodic orbits with relative period 3 and isotropyĜp = Z
τ
2. Herel =

lµ = so(2)L ⊕ RL ⊕ so(2)R. This is an example wherêσ � σ is not Ĝp-admissible, but
σ̂ � σ3 = id is. The persisting relative periodic orbits rotate around and translate along
one of the principal axes (the rotation axis ofτ), seeFig. 5. The details from[41] can be
found in Table 1. In this tableĜp ⊆ Gp denotes the isotropy group of the bifurcating
relative periodic orbits,̂Gp ⊆ Σn denotes their isotropy group,̂Σ ⊆ Σn their reduced
spatio-temporal symmetry group,8 their relative period,̂σ ∈ G their drift symmetry and
ξ̂ = (ξ̂L , ξ̂T, ξ̂R) ∈ g = so(3)L ⊕R3⊕ so(3)R the drift direction of the bifurcating relative
periodic orbits. As can be seen fromTable 1this family of bifurcating relative periodic
orbits contains two three-dimensional subfamilies with higher isotropy, one which consists
of relative periodic orbits which rotate but do not translate (case b) and one which consists
of relative periodic orbits which translate, but do not rotate (case c).

With our persistence result on symmetry breaking persistence of relative periodic orbits,
Theorem 4.7, we can show that there is a second family of relative periodic orbits nearby
with relative period close to one. The pair(σ = α,µ = 0) is a regular drift–momentum pair
becauseα ∈ G is minimal withgσ = so(2)L ⊕ R⊕ so(2)R. So byTheorem 4.2there is a
four-parameter familyP(λ,E), λ ∈ R

3, of relative periodic orbits close toP with relative
period close to 1 and drift symmetryσ(λ,E) close toα. The relative periodic orbits of this

Table 1
Symmetries of Type 1 relative periodic orbits bifurcating from the cubic oscillations[41]; τ andτ̂ are two different
non-identity elements inD2 = SO(3)D ∩Gp

Ĝp Σ̂ 8 σ̂ ξ̂

(a) Z
τ
2 Z

τ
2 3 exp(ξ̂) ξ̂R||ξ̂L ||ξ̂T||τ

(b) Z
τ
2 × Zκ2 Z

τ
2 × Zκ2 3 exp(ξ̂) ξ̂R||ξ̂L ||τ, ξ̂T = 0

(c) Z
τ
2 × Zτ̂◦κ2 Z

τ
2 × Zτ̂◦κ2 3 exp(ξ̂) ξ̂R = ξ̂L = 0, ξ̂T||τ
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Fig. 6. Pulsating cube RPOs of Type 2.

Table 2
Symmetries of Type 1 relative periodic orbits bifurcating from the cubic oscillations[41]; τ andτ̂ are two different
non-identity elements inD2 = SO(3)D ∩Gp

Ĝp Σ̂ 8 σ̂ ξ̂

(a) id Z
α
3 1 αexp(ξ̂) ξ̂R||ξ̂L ||ξ̂T||α

(b) Z
κ
2 Z

α
3 × Zκ2 1 αexp(ξ̂) ξ̂R||ξ̂L ||α, ξ̂T = 0

family rotate around and translate along the rotation axis ofα, i.e. the cross-diagonal of the
cube, seeFig. 6.

This family contains a three-parameter family of relative periodic orbits nearP with
relative period close to 1, isotropŷGp = Z

κ
2 and drift symmetry close toα. To see this let

Ĝp = Z
κ
2. ThenL = N(Ĝp)/Ĝp = O(3)L ×O(3)R, l = Fixg(Ĝp) = so(3)L ⊕ so(3)R and

lα = so(2)L⊕so(2)R so thatα is minimal inL andTheorem 4.7applies. The symmetry data
of Type 2 family of relative periodic orbits and its subfamily are summarized inTable 2.

Acknowledgements

I want to thank Mark Roberts for fruitful discussions. This work has been supported
by a Marie-Curie fellowship of the EU, contract number HPMF-CT-2000-00542, and by
the EU-TMR network ‘Mechanics and Symmetry in Europe’, contract number HPRN-CT-
2000-00113.

References

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd ed., Revised, Enlarged, Reset, Benjamin/
Cummings, Massachusetts, 1978.

[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, 1978.
[3] V.I. Arnold, B.A. Khesin, Topological Methods in Hydrodynamics, Springer, New York, 1998.
[4] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébraique reelle, Ergebnisse der Mathematik und ihrer

Grenzgebiete, vol. 3, Folge, Band 12, Springer, New York, 1987.
[5] T.J. Bridges, J.E. Furter, Singularity Theory and Equivariant Symplectic Maps, Lecture Notes in Mathematics,

vol. 1558, Springer, New York, 1993.



C. Wulff / Journal of Geometry and Physics 48 (2003) 309–338 337

[6] M. Brodmann, Algebraische Geometrie—Eine Einführung, Basler Textbücher, Birkhäuser, Basel, 1989.
[7] T. Bröcker, T. Tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol. 98,

Springer, New York, 1985.
[8] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Revised Edition, Dover, New York, 1987.
[9] M.-C. Ciocci, A. Vanderbauwhede, Bifurcation of periodic orbits for symplectic mappings, J. Diff. Eqs. Appl.

3 (1998) 485–500.
[10] M.-C. Ciocci, A. Vanderbauwhede, On the bifurcation and stability of periodic orbits in reversible and

symplectic diffeomorphisms, in: Proceedings of the SPT’98, World Scientific, Singapore, 1999.
[11] H. Cohen, R.G. Muncaster, The Theory of Pseudo-rigid Bodies, Springer, New York, 1988.
[12] M. Duflo, M. Vergne, Une proprieté de la représentation coadjointe d’une algébre de Lie, C. R. Acad. Sci.

Paris 268 (1969) 583–585.
[13] C.G. Gibson, K. Wirthmüller, A.A. du Plessis, E.J.N. Looijenga, Topological Stability of Smooth Mappings,

Lecture Notes in Mathematics, vol. 552, Springer, New York, 1976.
[14] V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge

University Press, Cambridge, 1996.
[15] Hochschild, Basic Theory of Algebraic Groups and Lie Algebras, Springer, New York, 1981.
[16] P. Jensen, G. Osmann, I.N. Kozin, The formation of four-fold rovibrational energy clusters in H2S, H2Se and

H2Te, in: D. Papousek (Ed.), Vibration–Rotational Spectroscopy and Molecular Dynamics, World Scientific,
Singapore, 1997.

[17] G.R. Kirchhoff, Vorlesungenüber Mathematische Physik, Mechanik, Teubner, Leipzig, 1876.
[18] I.N. Kozin, R.M. Roberts, J. Tennyson, Symmetry and structure of rotating H3

+, J. Chem. Phys. 111 (1999)
140–150.

[19] H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge, 1932.
[20] J. Lamb, I. Melbourne, C. Wulff, General bifurcations from periodic solutions with spatio-temporal symmetry,

including mode interactions and resonances, Preprint, University of Warwick, 2001.
[21] N.E. Leonard, J.E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with

rigid motion symmetry, Physica D 105 (1997) 130–162.
[22] E. Lerman, T. Tokieda, On relative normal modes, C. R. Acad. Sci. Paris, Sér. I 328 (1999) 413–418.
[23] D. Lewis, J.C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. R. Soc. London A 427 (1990)

281–319.
[24] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1994.
[25] K.R. Meyer, G.R. Hal, Introduction to Hamiltonian Dynamical Systems and theN-Body Problem, Springer,

New York, 1992.
[26] J. Montaldi, Persistance d’orbites périodiques relatives dans les systèmes Hamiltoniens symétriques, C. R.

Acad. Sci. Paris, Sér. I 324 (1997) 353–358.
[27] P. Newton, TheN-Vortex Problem, Applied Mathematical Science, Springer, Berlin, 2001, p. 145.
[28] J.-P. Ortega, Relative normal modes for nonlinear Hamiltonian systems, Preprint, University of Lausanne,

2000.
[29] J.-P. Ortega, T.S. Ratiu, Persistance et différentiabilité de l’ensemble des éléments critiques relatifs dans les

systémes Hamiltoniens symétriques, C. R. Acad. Sci. Paris I 325 (1997) 1107–1111.
[30] G. Patrick, Relative equilibria of Hamiltonian systems with symmetry: linearization, smoothness and drift,

J. Nonlin. Sci. 5 (5) (1995) 373–418.
[31] G. Patrick, Dynamics of perturbed relative equilibria of point vortices on the sphere or plane, J. Nonlin. Sci.

10 (2000) 401–415.
[32] G. Patrick, R.M. Roberts, The transversal relative equilibria of Hamiltonian systems with symmetry,

Nonlinearity 13 (2000) 2089–2105.
[33] G. Patrick, R.M. Roberts, C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by

energy methods, Preprint, University of Warwick, 2002.
[34] R.M. Roberts, M.E.R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,

Nonlinearity 10 (6) (1997) 1719–1738.
[35] R.M. Roberts, M.E.R. de Sousa Dias, Symmetries of Riemann ellipsoids, Resenhas IME-USP 4 (2) (1999)

183–221.
[36] R.M. Roberts, C. Wulff, J. Lamb, Hamiltonian systems near relative equilibria, J. Diff. Eqs. 179 (2002)

562–604.



338 C. Wulff / Journal of Geometry and Physics 48 (2003) 309–338

[37] U. Scheerer, C. Wulff, Reduced dynamics for momentum maps with cocycle, C. R. Acad. Sci. Paris Sér. I
333 (2001) 99–104.

[38] J.J. Slawianowski, Affinely-rigid bodies and Hamiltonian systems ongl(n, r), Rep. Math. Phys. 26 (1988)
73–119.

[39] C. Wulff, Persistence of relative equilibria in Hamiltonian systems with non-compact symmetry, Nonlinearity
16 (2003) 67–91.

[40] C. Wulff, J.S.W. Lamb, I. Melbourne, Bifurcations from relative periodic solutions, Ergodic Theory Dyn.
Syst. 21 (2001) 605–635.

[41] C. Wulff, M. Roberts, Hamiltonian systems near relative periodic orbits, SIAM J. Dyn. Syst. 1 (2002) 1–43.


	Persistence of Hamiltonian relative periodic orbits
	Introduction
	Hamiltonian relative periodic orbits
	Coordinates near Hamiltonian relative periodic orbits
	Hamiltonian systems near relative periodic orbits
	Non-degenerate relative periodic orbits

	Regular drift-momentum pairs
	Compact groups
	Regularity and algebraic geometry
	Local structure of the space of drift-momentum pairs
	Sufficient conditions for regularity

	Persistence of relative periodic orbits
	Symmetry preserving persistence
	Symmetry breaking persistence

	Application: oscillations of a deformable body in a fluid
	Symmetries and conserved quantities
	Spherical equilibrium and non-linear normal modes
	Relative periodic orbits

	Acknowledgements
	References


