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Abstract

We prove a persistence result for Hamiltonian relative periodic orbits with generic drift—
momentum pairs in the case of non-compact non-free group actions. Our starting point is a relative
periodic orbit which is non-degenerate modulo isotropy. We show that the analysis of the persis-
tence problem involves the study of a singular algebraic variety, the space of drift—-momentum pairs,
which is determined solely by the symmetry group of the problem. We apply our results to relative
periodic solutions of deformable bodies in fluids.
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1. Introduction

Relative periodic orbits are periodic solutions of a flow induced by an equivariant vector
field on a space of group orbits. In applications they typically appear as oscillations of a
system which are periodic when viewed in some rotating or translating frame. They there-
fore generalize relative equilibria, for which the ‘shape’ of the system remains constant
in an appropriate frame. Relative periodic orbits are ubiquitous in Hamiltonian systems
with symmetry. For example, generalizations of the Weinstein—Moser theorem show that
they are typically present near stable relative equilifgiy28]and can therefore be found
in virtually any physical application with a continuous symmetry group. Specific exam-
ples for which relative periodic orbits have been discussed or could be found by applying
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the Weinstein—Moser theorem to stable relative equilibria include rigid b¢tlj2$,24]
deformable bodief23,41], moleculeq16,18,34]and point vortice$27,31]

In contrast to the situation for general systef#@] so far there are only very partial
results on local bifurcation of relative periodic orbits of Hamiltonian systems. These are
described below. This is due to the fact that the conservation of momenta and symplectic
structure changes the generic behaviour dramatically and has to be taken into account.
Most persistence results for Hamiltonian relative periodic orbits which can be found in the
literature require compact symmetry groups and so do not apply when there are translational
symmetries present. This is frequently the case in applications, e.g. in the case of translating
bodies in fluidq421,41] and vorticeg31]. So persistence and bifurcations of Hamiltonian
relative periodic orbits are still a long way from being well understood, especially in the
presence of non-compact symmetry groups.

In a Hamiltonian system without symmetry a periodic orbit is typically a non-degenerate
fixed point of the Poincaré map inside its energy level, which implies that periodic orbits
appear as one-parameter families parameterized by efi&$}. In the case of continuous
symmetries with corresponding conserved momenta we expect families of relative periodic
orbits to be parameterized by energy and conserved momenta. But a given relative periodic
orbit, even if it satisfies a non-degeneracy condition, may not persist to every momentum
value nearby, and the persistence problem for relative periodic orbits involves studying to
which nearby momentum values a hon-degenerate relative periodic orbit persists.

Under a non-degeneracy assumption the following persistence results for Hamiltonian
relative periodic orbits have been obtained in the previous work. Mon2&istudied
persistence to nearby energy—momentum levels of Hamiltonian relative periodic orbits in the
case of free actions of compact symmetry groups. Ortega and[R@}jproved a persistence
result for non-free group actions by applyif#f] to the fixed point space of the isotropy
subgroup of the relative periodic orbit. These persistence results apply topological methods
which use the compactness of coadjoint group orbits and therefore do not apply when the
symmetry group is genuinely non-compact. The pdpe} presents a local description of
Hamiltonian vector fields near relative periodic orbits in the case of algebraic symmetry
groups. This description, which we summariz&ection 2is used iff41] to deduce results
on persistence for non-degenerate relative periodic orbits of non-compact group actions with
regular momentum modulo isotropy. The local description of Wulff and Rop&t}ss also
used heavily in this paper.

If the non-degeneracy condition is dispensed with then the bifurcation results which are
available mainly deal with fixed points of equivariant symplectic m@ps,9,10]which
can be applied to the Poincaré map of a periodic orbit inside its energy level, thereby giving
bifurcation results for periodic orbits of Hamiltonian systems, see[al3p

The results of this paper are inspired by work on persistence of relative equilibria. For
free compact group actions, Patrid0] proved that there is a manifold of relative equilib-
ria close to a given non-degenerate relative equilibrium if the velocity—-momentum pair of
the relative equilibrium is regular. If the momentum of the relative equilibrium is regular,
then its velocity-momentum pair is also regular, but the latter condition is weaker. For
compact symmetry grougs, Patrick and Rober{82] show that under a generic transver-
sality assumption the analysis of the persistence problem of relative equilibria with general
velocity-momentum pairs reduces to the study of a singular algebraic varietspdice
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of velocity-momentum pairg @& g*)¢, whereg is the Lie algebra of; andg* its dual.
This variety is determined solely by the symmetry of the system and so is independent of
the given Hamiltonian vector field. A generalization to generic velocity—-momentum pairs
modulo isotropy and non-compact symmetries is presentf&9in

In this paper we extend the persistence results of PafiBidkand Wulff [39] on non-
degenerate relative equilibria with velocity-momentum pairs which are regular modulo
isotropy to relative periodic orbits. We will introduce tepace of drift-momentum pairs
(G x g*)¢ which takes the role of the space of velocity—momentum pairs of relative equi-
libria. Our results are new even for compact group actions, but, §0id1] we also
deal with non-compact symmetry groups which are algebraic. These are groups defined
by polynomial equations and include compact, Euclidean and the classical Lie groups, so
this assumption is usually satisfied in applications. We require the relative periodic orbit
to be non-degenerate modulo isotropy. This means that it is non-degenerate on the fixed
point space of the isotropy of the relative periodic orbit, Seetion 2.3 This assumption
is quite common in the literature as mentioned above. Our main thedreaorem 4.2
treats persistence of non-degenerate relative periodic orbits with regular drift-momentum
pairs modulo isotropy to relative periodic orbits with the same spatio-temporal symmetry.
In addition, inTheorem 4.7we give a result on persistence to relative periodic solutions
with smaller spatio-temporal symmetry.

The paper is organized as follows.$ection 2we introduce the setting that we work in
and recall the bundle construction near Hamiltonian relative periodic orbits of Wulff and
Robertg41]. In Section 3we investigate the local structure of the variéy x g*)¢ near
regular drift-momentum pairs for general Lie groupsSkction 4we present our main
results, the persistence theorems mentioned abovgedtion Swe apply our methods to
oscillations of a deformable body in an ideal fluid.

2. Hamiltonian relative periodic orbits

In this section we describe the setting that we work in and summarize the results of
Wulff and Robertg41] on the bundle structure and differential equations near Hamiltonian
relative periodic orbits which we use in the following sections.

We consider a Hamiltonian system

i= fu) (2.1)
on a finite-dimensional symplectic manifald with symplectic formw (-, -):
oy (fu(x),v) = DHXx)v, xeM,ve T M.

We assume that a finite-dimensional Lie gra@mcts onM properly and symplectically
and that the Hamiltonia# is G-invariant. This implies thaf2.1)is G-equivariant, i.e.

fHEY =dfi(x), xeM,ged.

So whenevek(r) is a solution of(2.1) then so isgx(r). We call the elements off the
symmetriesf (2.1). Letg denote the Lie algebra @f. By Noether’s theorem locally there
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is a conserved quantity for eacht € g such thatlg is the Hamiltonian for the symplectic
flow x — exp(&nx [1,24]. Moreover,J; is linear in&, so that) maps to the duaj* of the
Lie algebrag of G. Let Ad,, g € G, denote the adjoint action @ ong: Ad, £ = gkg 1,

& € ¢, g € G, and consider the coadjoint action@fon g* given by
=(Ad) ", gedq. 2.2)

We assume throughout the paper thé defined on the whole 0f1 and isG-equivariant
with respect to th& -action onM and the coadjoint action agyt. For symmetry reduction
in the case of only locally defined momentum maps or momentum maps which are not
equivariant with respect to the coadjoint actiongihseg[37].

A point p € M lies on arelative periodic orbit if there exists- 0 such thatp;(p) € Gp.
The infimumT of suchr is called therelative periodof the relative periodic orbit and the
elements € G such thatdt(p) = op is called aphase-shift symmetryeconstruction
phaseor drift symmetryof the relative periodic orbit. The relative periodic oriitself is
given by

P={gPo(p).g€G,0eR}

We assume thal’ > 0 so thatP is a proper relative periodic orbit (i.e. not a relative
equilibrium). We always reparameterize time such that 1 and assume, without loss of
generality, thatH(p) = 0. Thespatio-temporal symmetry group of the relative periodic
orbit P with respect top is the set of all elementg of G for which there exist®(g) €
R such that®g,)(p) = gp. Its elements are called spatio-temporal symmetrie®,of
and it contains the isotropy subgrodf, = {g € G,gp = p} of p € P. In the whole
article we assume, as [d1], thatG is an algebraic Lie group, i.e. defined by algebraic
equations.

In this section we also assume that the isotrépyof p € Pis finite. This simplifies the
bundle structure near relative periodic orbits and the form of Hamilton’s equations in these
coordinates considerably.

Remark 2.1. Even if the isotropy subgroug, of the relative periodic orbi® (p =

o ld1(p) € P) is not finite onM it is still finite on the flow-invariant symplectic manifold
M = Fix\((G ), the fixed point space @ , in M, whereG , C G, is asuitable subgroup
of the isotropy subgroug , of p. The symmetry group acting OM isL:= N(Gp)/Gp.
Here N(G) denotes the normalizer of a subgrotipf G.

We can always choosg ), such thatZ, becomes finite by setting, = G ,. Then the
action of L nearp is locally freg i.e. L, = {id}. We call subgroup§ , of G, with L, is
finite regular subgroups of5 ,, seeDefinition 4.3and[39].

We will use this idea to apply persistence results for relative periodic orbits with finite
isotropy to the manlfold\/l and in this way get persistence to relative periodic orbits with
isotropy contammgﬁp for G, arbitrary Whenever is a regular subgroup a¥ . This
trick is quite common in the literature, see, §29,34,39,41] For more details we refer to
Section 4.2

We end this remark by showing how the drift symmetrgind the momentum = J(p)
of a relative periodic orbif® containingp = o~ 1®1(p) can be identified with elements
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Fig. 1. Coordinates near a periodic orBitvhereG = {id}. HereA’andA? are Poinca sections t& at p and
®y(p), respectively.

of L andl*, respectively. Heré denotes the Lie algebra df. It is easy to check that
the drift symmetryo € G of the relative periodic orbit lies iV(G ,) [40] and it is only
determined moduldr ,, so that it can be identified with. € L. Embedding into g as

| >~ Fixg(qp) N glﬁ for a G ,-invariant inner product og we can identifyu. with an element
pL € 1% given by = ulr.

2.1. Coordinates near Hamiltonian relative periodic orbits

Let p lie on a relative periodic orbiP of (2.1) with relative period 1, s@1(p) = op for
someo € G. Let G, be the momentum isotropy of = J(p) with respect to the coadjoint
group action(2.2). For a setG C G let z(G) be the Lie algebra of the centraliz(G)
of G in G. By [42, Lemma 2.1]any relative periodic orbit of an algebraic group action
becomes periodic in a moving frame which respects the isotropy and preserves the momen-
tum of the relative periodic orbit. To be more precise, we can§irdg,, « € G, such
that

o = aexpé), Ad, = £€2(G,), dneN, o" =id. (2.3)

Sop lies on a periodic orbit with periadwhen viewed in a frame moving with velocigyL et
%, denote the compact group generatedtandG ,. The groupX), is the spatio-temporal
symmetry group of the relative periodic ortin a frame moving with velocitg (and also
the spatio-temporal symmetry of the corresponding periodic orbit of the symmetry reduced
system, as we will see iBection 2.2 We haveX,,/G, = Z.

The tangent spac&, M at p € P decomposes a§,M = T& N, whereN is a
G p-invariant Poincaré section B at p, i.e. aG p-invariant complement tg := 7,P in
TpM. LetU be aG-invariant neighbourhood @? in M. Then it is shown irf40,41], see
alsoFigs. 1 and 2that we can write every € U asx = (g, v, §) whereg € G, v € N lies
in the Poincaré section transversefRt@at p andd € R is the phase of the relative periodic
orbit and that these coordinates are unique modiloi.e.,

U= (G xR/nZx N)/Z,. (2.4)
The quotient byx,, is with respect to the following action &, onG x R/nZ x N-

(gp- (xi)(g, 0,v) = (goc_igl_,l, 0+ i, gin\[v) Vep € Gp, i€ly, (2.5)
whereQ € O(N) has orden.
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Fig. 2. Coordinates near a relative periodic ofditvhereG # {id}. Here\is a Poincag section tdP at p.

The symplectic structure of the tangent space decomposifigt = 7@ N and the
bundle(2.4)is described in the following theorem.

Theorem 2.2 ([42, Theorem 3.3] Letp = o~1®1(p) € P lie on a relative periodic orbit
of (2.1) and letG, be finite. Then there is a choice of Poincaré sectMisuch that the
following hold true

(a) The space§ and further decompose into
T=To®T1®T2, N=No®N1®N>,

where

To=0up:=TpGup =0y, Ti=0gpN(Qup)* ~09/g,,
Tz = span fu(p)) ~ R,
and

No = ker DH(p) N (ker DJ(p))* NN ~ g,

N1 =ker DH(p) Nker DI(p) NN,

N> = (ker DH(p))* Nker DI(p) N N =~ R. (2.6)
Orthogonal complements are taken with respect to an appropggtenvariant inner
product on7, M. The spaced/o, N1 and N> are all G ,-invariant and7o & No, N1, T1
and 7, & N> are symplectic subspacesBfM such that

wp = O|TeN, T @lng + 0lT + 0l e,

The symplectic forms ofy ® Ny and 72 ® M2 have standard forms in the chosen bundle
coordinates

(b) Define ax,-invariant symplectic form onf := G x g, x M x T"(R/nZ), with
T*(R/nZ) = R/nZ x N2, by

W = 0Gxg; + 0N T OTR/nZ)

wherea)(;xg;; is the restriction of the standard symplectic form BtG = G x g* to
G x gj, with the embeddinR.9), ;= w|xn; andor r/,z) is the standard symplectic
form onT*(R/nZ). Then theG-reduced phase space

UG = R/nZ x N)/Z,
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is a Poisson space with respect to the restricted Poisson braakdtthe identification
(2.4) is a symplectomorphisnMoreover the actions ofG, and Q on A have the
forms

gp(v,w, E) = ((Ad;p)flv, gpw, E) Vg, e Gy, (2.7)
and
On(v, w, E) = (Qov, Q1w, E) with Qo = (Ad¥)~L. (2.8)

The linear mapQ1 : N7 — N is orthogonal with respect to the restrictét,-invariant
inner product oV, has ordem and is symplectic with respect to the restric@g-semi-
invariant symplectic fornwy, .

The spaceVp =~ g;, can be interpreted as the space of momenta in body coordinates.
It is a section transverse to the group oiGjt < g* at 1, as we describe in more detalil
in Lemma 3.7 To embedy;; into g* we choose &), -invariant complement,, to g,, in g.
Then we can identify

g, ~annn,),  (9/g)* ~anng,) = T.Gu, (2.9)

where anin,) and anrig,,) denote the annihilators of, andg, in g*. Moreover, since
G, is finite the momentum level s@tl(u) € M is a manifold neap so that\; can be
interpreted as a Poincaré section transverse to the relative periodi®@priitP N J=1(w)
inside the energy—momentum level det (1) N H~1(p). Physically, it typically describes
shape vibrations. The parameferc N>, parameterizes the energy level sets. The variable
0 € R/nZ is the phase of the relative periodic orfit].

Remark 2.3. Asshownirn41], the tangent space decompositiofb&orem 2.ga) remains

true for continuous isotropy grous, if we now identify 7o >~ g,,/9, andNo =~ (9, /9,)*.

We will need this for the study of symmetry breaking bifurcationsSection 4.2 The
modifications ofTheorem 2.fb) which are necessary in the case of continuous isotropy
groups are more complicated, §d&], and not needed in this paper.

2.2. Hamiltonian systems near relative periodic orbits

In this section we present the differential equations near a relative periodicFoetit
pressed in the bundle coordinates that we introduced in the previous section. As we will see
they decompose the dynamics ngainto a periodically forced motion inside a Poincaré
section which drives the drift dynamics on the group.

To describe these differential equations we firstintroduce some more notation. We denote
the identity component of a subgrogpof G by G'¥ and say that an elemepnte g* split
[14,36,41] o-split for someo € G, or stronglysplit, if the complement,, to g, in g can
be chosen to be invariant und@iﬁ', Gi,? and Ad; or G, respectively. This is always the
case ifG is compact, but in general is not satisfiedGifis non-compact. An example is

provided by the Euclidean group = SE(3) of motions in three-space, Sgg6].
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Let Panng,) be the projection frong* to ann(g,,) with kernel antin,) >~ g;;. Then for
any¢ e g, and any smalb € ann(n,,) there is a unique € n, such that

Panng,) @, (1L +v)) =0, (2.10)

as is shown iffi37, Proposition 2.5]Moreover, = n,, (v)§ is linear iné. If w is splitn,, can
be Choserti}ilf-invariant. Thenanm,) ~ gj; is Gilf-invariant which implies tha = 0. For
every smallv € ann(n,,) define the linear magp, (v) from g, to g asj,(v) = id 4 n,(v).
We denote by Ad and ad the adjoint action o5, andg, ong,..

Leth = h(8, v, w, E) denote the lift of theG-invariant Hamiltoniand back to the space

G x R/nZ x (No & N1 @ Na) under the map given byheorem 2.2The functionh is
X, -invariant:

h6, (A} )™My, gpw, E) = h(6, v, w, E) Vg, € G,
and

h(6 + 1, (AdX) "Ly, Q1w, E) = h(6, v, w, E).

In particularfz is periodic inY with periodrn. We are now ready to formulate the Hamiltonian
system(2.1)in the bundle coordinatg2.4).

Theorem 2.4 ([42, Theorems 3.3 and 3}¥]Let p = o~ 1®1(p) € P lie on a relative
periodic orbitP with finite isotropy subgrou , and leto = « exp(§) as in(2.3). Assume

that time is parameterized so that the phase dynamics near the relative periodic orbit is
given byd = 1. Then the Hamiltoniar in bundle coordinates is of the form

h(6, v, w, E) = h(6, v, w) + E (2.11)
for someX, -invariant function onR/nZ x (No ® N1). We haveD,, )k (6, 0, 0) = (&, 0)
and the differential equations for the motion in bundle coordinates

(g,0,v,w,E) e G XxR/nZ x N’

have the form

&=0j.(v) Dyh (0, v, w),

v=ad; ) neuw V1 = aogj,; v+ Py (a%u(@’v’w)(v)),

w = Jp; Dyh(6, v, w),

E =—Dyh(6, v, w),

=1, (2.12)

wherej(@, v, w) = 1, () D,h(O, v, w). Heread,”™, x € g,, is the dual operator tad,
and Py the projection frong* to ann(n,,) =~ gj, with kernelann(g,,).

Note thatu + v() is the momentum in a frame moving with velocjty(v(r)) D, a(t, v(t),
w(?)), so if (g(1), v(r), w(r)) is a solution of(2.12)and g(0) = id, then the momentum
conservation in bundle coordinates reads

g (u+v@) = pn+v(0). (2.13)



C. Wulff/ Journal of Geometry and Physics 48 (2003) 309-338 317

Eqg. (2.12without theg-equation are called tr®eymmetry reduced systefhese equations
form a X, -invariant periodically driven Poisson system on the Poincaré setfimgether

with the (trivial) phase dynamics éf The relative periodic orbit becomes a periodic orbit
of the symmetry reduced system with spatio-temporal symmetry gkjuny relative
periodic orbitP close toP also becomes a periodic orbit of the symmetry reduced system,
and we say thaP and? have thesame reduced spatio-temporal symméty corresponds

to a periodic solution with spatio-temporal symmeXy for the symmetry-reduced system
nearP. This doesiotnecessarily imply that the spatio-temporal symmetry grojpsid &

of P andP coincide. For example fo& = SO(2) it may happen thaP is a quasiperiodic
solution whereas rotational and relative period‘@uﬁay be rationally dependent, so that

is fibered by periodic solutions. Note tHtand? have the same reduced spatio-temporal
symmetry if and only ifP and? have the same isotropy and the same relative period (where
we use the time-reparameterizationTdfeorem 2.4

2.3. Non-degenerate relative periodic orbits

In this section we introduce a non-degeneracy condition for relative periodic orbits which
we will use in our persistence results $ection 4 We will see that this non-degeneracy
assumption reduces the persistence problem to the study of the structure of a certain variety,
the space of drift-momentum pairs.

We are mainly interested in the persistence of a relative periodictbihearby relative
periodic orbits with the same reduced spatio-temporal symmetry, that is, the same isotropy
and the same relative period (with respect to the time parameterizatibimeafem 2.4,
and restrict to this case in this subsection. Bugéttion 4ve will also consider persistence
to relative periodic orbits with smaller reduced spatio-temporal symmetry group. Since we
restrict attention to nearby relative periodic orbits with the same isotropy we can, withoutloss
of generality, assume that, is finite, for example by replacingt with M= Fix (G p),
cf. Remark 2.1

Before we can define the notion of a non-degenerate relative periodic orbit we need
another proposition.

Proposition 2.5 ([42, Proposition 4.3] Letp = o~ 1®1(p) € P, o € G, lie on a relative
periodic orbit P with finite isotropy subgroui;, and letB = o~ 1D®1(p). Let time be
reparameterized so that= 1. Then

(a) The mapB has the following structure with respect to the decomposifioM = 7,Gp®
Re&N:

Ad;t 0o D
B=| o 1 o |. (2.14)
0 0 By

(b) Letv — q>/1\f0(v), v = (v,w, E) € N, be the timel map of the periodically forced
system onV. ThenO is a fixed point of the maQX/1<D/1\{O. The blockByin (2.14)is the
linearization of this mag.e. By = Q;,l D(D%(O), and has the following block structure



318 C. Wulff/ Journal of Geometry and Physics 48 (2003) 309-338

with respect to the decompositidi= N & N1 & No:

Ad¥* 0 0
By = Bip B1 O
0 0 1

We are now ready to define what a non-degenerate relative periodic orbit is.

Definition 2.6. Let p = o~ 1®1(p) lie on a relative periodic orbit with finite isotropy
subgroupG ,. The relative periodic orbiP is non-degenerate modulo isotroffyB; does
not have eigenvectors with eigenvalue 1. HBgés the block inB = o1 D@1(P)IFixu(G,)
defined inProposition 2.5

Remark 2.7. In Section 4.2ve adapt the notion of non-degeneracy and the considerations
below to symmetry breaking bifurcations.

Lety, ,, be the time-evolution of the periodically forced differential equation§e®A\7,
that is, inside the energy level sEt= H(p) of the Poincaré sectiol. Let Qnyon; =

OnNlInpen;- Then O is a fixed point OQX/‘(lJ@/\/l'J/l,O and relative periodic orbits close

in M correspond to periodic points QX%@M‘I’LO- Write Y1 0 = (d/l”!o, Wfo)- As shown

in Proposition 2.5ve haveQIl D¥{’(0) = By, so, if P is non-degenerate, we can solve
the equatiorQIllllfo(v, w) = w uniquely forw(v) € N if v € Ay is small. Therefore the

problem of finding relative periodic orbits closefin M with relative period close to 1
and same isotropy @8 is equivalent to finding the solutions of the fixed point equation

II(v) = v, where IT : Fixy,(Gp) — No, M(v) = Adg ¥y o (v, w(v)).
(2.15)

Here we used the block structure ¢fy given in (2.8). If v is any such fixed point
of IT then(u w(v)) is a fixed point OfQX/l@N ¥ o With isotropy subgrougG,. Since
oh(t, ¥ ,0, 0) = D/h(t, ¥ th vy for every trajectory?; o(v, w) of the periodically
forced(v, w)- subsystem a2. 12)and since the Hamiltonianin bundle coordinatés v, w)
is X, -invariant byTheorem 2.4we get from theE-equation of(2.12)that

1
EQ) — E(O):/0 D:h(t, ¥, O(U w)), l,l’two(v w(v))) dt

=h(1, Qov, Q1w(®)) — h(0, v, w(v)) =0
Therefore the fixed poin@u w(v)) of QX/(l)@ Nlll’l o generates a one-parameter family

of fixed points on parameterlzed by enerdy. These fixed points lie on periodic
solutions of the periodically forced symmetry reduced system on the Poincaré s&ction
Using again the bundlequation (2.12jve see that this one-parameter family of periodic
solutions on the Poincaré sectidvi corresponds to a one-parameter family of relative
periodic solutions of the original systef2.1). This procedure is quite comm¢26,29,41]
and the same idea is used in the study of persistence of relative equidyga, 36,39)
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To analyse the properties of the mapfrom (2.15)we need to describe the symplectic
leaves of the spack =~ gj, which is a Poisson space Gyreorem 2.2Since the Poisson
structure o\ is in general not the standard Lie—Poisson structure upléssplit [36],
the symplectic leaves are in general not coadjoint orbits. To describe the symplectic leaves
we need one more notion. Lgte g*. Asin[39] we defineZ,M, wherev € ann(n,) ~ gj,
is small, by the condition

§€Zyy & Panrg,) (Ady 1 (i +v) — 1) = 0 (2.16)

andZ, , to be the path connected componentZ;,]‘,U containing the identity. Clearly,
G'SJFU c Z,, foreveryv e annn,) and7idZ,,, = j.(V)Q,.

Lemma 2.8. Let p = o~ 1®1(p) € P lie on a relative periodic orbit with finite isotropy
subgroupG ,.

(a) The symplectic leaves &fy ~ g, ~annn,) are given byL (v) = Z,, ,(1 +v) — u.

If w is split thenL(v) = G'9v is a coadjoint orbit
(b) The maplT from (2.15)is Poisson and has the form

oW =g (n+v)—u, W) eZy, (2.17)

with g : Fixap(G,) — G smooth andg(0) = oL If u is strongly split andh, is
chosen to b& ,-invariant theng(v) € G, so thatlT1(v) = g(v)v.

Proof.

(a) The symplectic leaves gf are the coadjoint orbit6'd (1 + v). Onu + annn,,) they
restrict to the leaveg,, ,(u + v).

(b) Letg(®) = ®% (v, w) denote the solution of the-equation of(2.12)with initial value
(id, v, w). Then the formulg2.13)for the momentunw(z) in the comoving frame, and
the definition(2.15)of 17 imply (2.17)with g(v) = (®¢ (v, w(v))a)~L. The rest of (b)

is clear. O
Let
:Gxg' =g,  7(gpn=gu, (2.18)

let Py : G x g* — g%, Py:(g, v) = v, be the projection fron&; x g* to g* and let
(G xg)° = (r = Pg) 1(0) = {(g, 1) € G x §", g = i} (2.19)

be the set of elements 6f x g* which commute in the sense that = u, or equivalently
(g, u) = w. SinceG is an algebraic group this is in general a singuallgebraic variety
The drifto € G of a relative periodic orbiP in M with momentuny satisfiesr € G, so
that (o, n) € (G x g*)¢. We therefore callG x g*)° the space of drift-momentum pairs
FromLemma 2.8wve see that the mafd describing relative periodic orbits neBrand the
mapr determining(G x g*)¢ are related by

II(v) = m(g(v), u +v) — . (2.20)
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This is very similar to the situation for the set of non-degenerate relative equilibria which
is determined by the space of velocity—-momentum g&2s39] given by the variety

@@ 9° = Tid,0(G x g)°.

The following proposition summarizes the relationship between solution§2.45)
and (2.20) and relative periodic orbits ¢R.1).

Proposition 2.9. Let p lie on a relative periodic orbifP with finite isotropy subgrouf ,

and energyH(p) = Owhichis non-degenerate modulo isotropy. Then every relative periodic
orbit close toP with isotropy subgroupr , and relative period corresponds to a fixed point
of IT as defined if2.15) Letv()1), A € R", v(0) = 0, be anr-dimensional solution manifold

of (2.15)and(2.20) Then there is arir + 1)-dimensional family of relative periodic orbits
P(x, E) in M with isotropy subgrouf ,, momentund(p(x, E)) = u + v(A), p(A, E) €

P(r, E), relative period ongwhere time has been reparameterized such éhat 1) and

drift symmetryo (A, E), with (0, 0) = o, p(0,0) = p, P(0,0) = P. Moreoverp(X, E)
andao(A, E) are parameterized smoothly hye R” and energyE. The manifoldMgpoin

M formed by thigr + 1)-dimensional family of relative periodic orbits has dimension

dmMgrpo=dimG +r + 2.

Remark 2.10. The above proposition deals with persistence to relative periodic orbits
with the same reduced spatio-temporal symmetry group, but the arguments can easily be
adapted to give persistence to relative periodic orbits with smaller reduced spatio-temporal
symmetry group. For details, s&ection 4.2

We see that in order to obtain persistence results for non-degenerate relative periodic
orbits we need to understand the structure of the space of drift—-momentuni(pairg*)°.
In Section 3we study the varietyG x g*)¢ near regular points. After that, iBection 4
we solve(2.15) under a genericity assumption on the drift-=momentum pair. In this way
we prove our main resulfheorem 4.2on persistence of non-degenerate relative periodic
orbits with regular drift—-momentum pairs.

3. Regular drift-momentum pairs

In this section we investigate the variety = (G x g*)¢ of drift-momentum pairs
defined in(2.19) We introduce the notion of a regular drift-momentum pair, describe the
variety locally using a section transverse to the group orbit, and give sufficient conditions
for a drift-momentum pair to be regular. The results are analogous to results on the space
(g & g*)° of velocity—momentum pairs of relative equilibria[@2,39]

Let, as beforeZ(g) be the centralizer of € G. Define an action of € G ono € G by
gog~1and letG, = Z(o) be the isotropy group af with respect to this action af. The
following concepts generalize the notions of Patrick e{20,32,39]to relative periodic
orbits.
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Definition 3.1.

(a) We calli € g* regular (or minimal[36]) if its isotropy subgroug,, for the coadjoint
action of G ong* has minimal dimension, (G).

(b) We callo € G regular (or minimal) if the dimension, (G) of its isotropyG, is locally
minimal.

(c) A pair(o, n) € (G x g*)¢is calledregularif (G x g*)¢ is a manifold neafo, (). In
this case let = r(,,,)(G) be such thatG x g*)¢ has dimension dig ;) (G x g*)¢ =
dimG + r near(o, ).

(d) Define aG-action onG x g* by

go,u) = (gog L gn), o0€G, peg, gegG,

sothatG ) = GoNG . Adrift-momentum paifo, 1) € (G x g*)¢is calledminimal
if dim G, is locally minimal in(G x g*)°.

Remark 3.2. If (o, ) is a minimal drift—-momentum pair thenis minimal inG,, and the

two conditions are equivalentjf is o-split as we will see ifProposition 3.11In this propo-
sition we also show that minimality and regularity of a pairu) € (G x g*)¢ are equivalent

if uiso-split. In particular, this is always true for compact groups, seefRisposition 3.3

In general the relation between minimality and regularity of drift-momentum pairs is
a non-trivial problem of algebraic geometry, as for velocity—-momentum gé&ins) <

(g @ g*)° of relative equilibrig[39], see alsdkemark 3.6a) and (b).

3.1. Compact groups

In the case of a compact grogpthe sets of regular elements= G, 1 € g* and(o, 1) €
(G x g*)° are easily classified. Recall thatCartan subgroupC(o) of a compact group
G is a subgroup o6 which is generated by a single element G and is not contained
properly in another group with this property. Elements G generating a Cartan subgroup
are open and dense @, and ifo1, o7 lie in the same connected componentothen they
lie in conjugate Cartan subgroupd. A maximal torusT is a Cartan subgroup = C(o)
witho € G'9, and for anys € G generating a Cartan subgrody) the identity component
C(0) of C(0) is a maximal torus irZ (o). We have the following proposition.

Proposition 3.3. In the case of a compact group a pair (o, ) € (G x g*)¢is regular if
and only if it is minimal. Moreover € g* is minimal if and only ifg,, is the Lie algebra
of a maximal torus inG, ando € G and (o, u) € (G x g*)¢ are minimal if and only if
0- andg, ) are Lie algebras of Cartan subgroups @ Finally, if (o, 1) is regular then

ro.w)(G) = dimg(e -

Proof. From Patric30] and Wulff[39] we know thaix € g* is minimal if and only ifg,,
is the Lie algebra of a maximal torus 6f

As mentioned above every € G is contained in a Cartan subgrodp Then the Lie
algebrac of C is contained irg,,. As a consequenag, has minimal dimension if and only
if c=0s.
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Since for compact groups evepyis strongly split it follows fromProposition 3.1(c)
that (o, ) € (G x g*)¢is regular if and only if it is minimal. Leto, 1) € (G x g*)¢ be
arbitrary. ldentifying adjoint and coadjoint actions and usingdhat .« we can identifyu
with some element af(o), and so there is a maximal torus4iio) with Lie algebra, such
thatt, € g(,.)- The Lie algebrd, is the Lie algebra of a Cartan subgrofigontainingo.
The proof now follows, as before, from the fact tigat ,) has locally minimal dimension
if and only if g, ) = to. O

3.2. Regularity and algebraic geometry

In this section we prove that regular elememts G, u € g* and(a, n) € (G x g*)°©
are generic and that (G) is constant on connected componentsGofProposition 3.5
To do this we introduce some elementary real algebraic geometry. An (algebraic) variety
V C R™ is an algebraic set, i.e., a subsetfi¥ff defined by polynomial equationg (x) =
<o = fu(x) = 0, wherex = (x1,...,x,) € R"and f; e R[x], i = 1,...,n. We write
V = V(f). HereR[x] = R[x1, ... , x»,] denotes the ring of polynomials in variables. An
algebraic variety is calleidreducibleif it is not a union of two different non-empty algebraic
varietieg4]. Recall that a sel/ C V is called Zariski-open i¥ \ U is an algebraic variety.
So we see that an algebraic variétyis irreducible if any Zariski-open setg;, U, of V
intersect. As irf13] we call a pointp € V regularor non-singular ifp is asmoothpoint of
V, thatis,V is a manifold neap, otherwisep is calledsingular. Smooth points of algebraic
varieties are open and derjd8, Theorem 1.2.4]

We will need the following lemma on algebraic groups in the sequel.

Lemma 3.4 ([15, Theorem 11.1.4] Let G be algebraic. Then its irreducible components
are disjoint and are unions of connected components.of

We call¢ € g regular ifge has minimal dimensiof80,39]and define:(G) = dim(ge).
We are now ready to state the main result of this section.

Proposition 3.5.

(a) The set of regular elementse g* is open and dense igi.

(b) (i) The set of regular elementse G is open and dense iG. '
(i) Leto be regularinG, r = r,(G) and lets be a regular element afG'®. Then
rs(G) =r.
(i) Leto € G'9 be regular inG, and leté € g be regular. Them:(G) = r,(G).

(c) The set of regular pairgo, 1) € (G x g*)¢is open and dense G x g*)C.

Proof.

(a) Part (a) was proved by Duflo and Vergne, ge&g.

(b) Part (b)(i) can be shown in the same way. ket G be regulary = r,(G), and let
Vs, be the irreducible component & = G containings. The condition dinig;) =
dimker(Ad; — id) > r is an algebraic condition of € G since it is equivalent to
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the conditions that the determinants of @Jlr)-minors of the matrix Ag — id vanish.
Moreover, these conditions define a proper subséf,ofvhich is a subvariety o¥,,.

So the complement of this subvariety is Zariski-open and, due to the irreducibility
of V,, open and dense iW,. This proves (i). Part (ii) follows from the fact that by
Lemma 3.4he subvariety/, contains the connected compone6t® of o in G. From
re(G) = rexpe) (G) for &€ € g small we obtain (jii).

Part (c) follows from the corresponding statemi@r®, Theorem |.2.4for general va-
rieties mentioned above. O

(c

~

Note that, (G) does depend on the connected component contasnibet for example,
G = O(2). Then foro € O(2) \ SO2) we haver,(G) = 0 and foro € SO(2) we have
r«(G) = 1. By definition, minimal drift-momentum pairs are also open and dense in
(G x g*)°. We conclude this section with the following remarks.

Remark 3.6.

(&) We call a pointp of an algebraic varietyy = V() for a vector of polynomialsf
minimal (with respect tof) if ker D f(p) has locally minimal dimension if. If the
components;,i =1, ... ,n, ofthe vectorf = (f1, ..., f,) of polynomials generate
the ideal/(V) C R[«] of all polynomials which vanish orv then for everyp € V
the dimension of ker B(p), with f = (f1,..., fi), fi € I(V),i =1,... ,i, has a
minimum for f = f, and in this case dim ker fip) is called theembedding dimension
edim, V of V at p [6]. For every smooth poing we have edirp V > dim,V, but in
general smooth points of varieties are not minimal, and equality does not in general
hold, even ifV is irreducible and the;, i = 1, ... , n, generatd (V), cf. [4, Example
3.3.11(b)]

Part (b) below shows that a drift—-momentum pairu) € (G x g*)¢ is minimal in
the sense dbefinition 3.1if it is a minimal point of the variety(f) = (G x g*)¢ with
respect tof = = — id with 7 from (2.18) This supplementRemark 3.2

(b) For(o, n) € (G x g*)¢ we have

dim G, ) +dimG = dimker(Dr (o, 1) — Pg),

wherer is from (2.18)and Py : G x g* — g%, Pg:(0, u) = n, is the projection of
(o, ) onto its second component.

Proof. Let (5, /1) € ker(Dn(o, 1) — Py), andé = &0, & € g. Then —ad u +
(Ad;‘;,l —id)a = 0. Hence(Ad(*rl —id)ft € gu = 7,,G. Using the decomposition
g = g, @ n, and the fact that ang, ) = gu we can decomposg’ = gu @ ann(n,,)
and therefore we can wrife = a(j; w~+vwith b € annin,) andn € n,. The condition
(Ad:’;_1 —id)x € gu is equivalent tc(Adj;_1 —id)d € gu. Sinces € G,, we conclude
that Ad, mapsg,, into itself and so, the conditiofAd” _, — id)D € gu is equivalent to
(Ad""} —id)D = 0. The proof now follows from the facts that dim kad""; —id) =

dimge, ), thatt is only determined modulg, and that aﬁ;m € ann(g,) can be chosen
arbitrarily. O
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(c) In [4, Definition 3.3.1]points p € V with edim, V = dim,V are called regular
(non-singular). Fronj4, Propositions 3.3.9 and 3.3.10, Example 3.3.11ifdfdllows
that this is a stronger condition than our notion of regularity.

(d) Thestratification theorem for algebraic varieti§$, Theorem 2.3.6; 13, Theorem 1.2.7]
states that every algebraic variety can be decomposed into a finite number of submani-
folds, calledstrata, which are semi-algebraic sets, and that this decomposition is locally
finite and can be chosen to be Whitney-regular. This theorem is needed to develop a
persistence theory for relative periodic orbits with arbitrary drif—=momentum pairs—an
open problem which is beyond the scope of this paper.

3.3. Local structure of the space of drift-momentum pairs

This section contains some technical lemmata which are needed later in the proofs. It can
be skipped at first reading.

The following two lemmata are needed to study the local structure of the space of
drift-momentum pairs. The first lemma shows tfjatan be interpreted as a section trans-
verse to a coadjoint orbfu C g* atu € g*.

Lemma 3.7 ([40, Lemma 2.1(a)] Letu € g* andg, & n, = g. The spacex + gj, with
g;, ~ ann(n,) is a section transverse @y at .. More preciselythere are neighbourhoods
U of uwing*, Ugs(id) ofid in G and Ug: (0) of 0in g;’; such that

forall i € Uthereareg € Ug(id), v € Ug: (0) suchthafi = g(u +v), (3.1)
and (g, v) is locally unique modulo the action 6fg (id) N Z,, , given by

gu(g,v) = (gg,:lv guov), guovi=gu(u+v) —pu,

gu € Ug(id)N Zy . (3.2)

If wis splittheng, o v = g,v. If we choosg = exp(x), wherey € n,, x ~ 0,theny and
v are locally unique

In the following lemma we describe the é&,v defined in(2.16)in a neighbourhood of
o € G, forgivenu € g* andv € gj;. For any setd € G ando € A denote byA“ the
connected component df containingo.

Lemma3.8. Let(o, n) € (G x g")®andg, ®n, = g.

(a) Let Ug(id) Qe a sufficiently small neighbourhoodidfin G and Ug (o) = oUg;(id).
Thenthe seZ, ,NUg (o), wherev € g:; ~ ann(n,) is small is a manifold of dimension
dim G,,. Moreover there is a smooth function, . : Ug,eg; (0) — Ug(id) with

Ue((r,u)('a V) € Zu,w e(ﬂ',/l.)(éa 0) = exp(é) forall; & € Ous
which is defined by

e((f,u)(Xv V) = expx + ﬂf(w)(x, V).
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Herenfw) ' gu ® g, — Ny is smooth in(o, x, v) and satisfies
Panr(gu)(a exp(x + nfw)(x, v)(u+v) —pn) =0, (3.3)
and
nfau)(X7 O) = Os Dxnzd’u)(X’ l))|)(=0 = 77“(‘))' (34)

(b) If wiso-splitandann(n,,) invariant underAd andG'¢ thenn¢, | = 0ande(, (-, v) =
exp(-).

(c) If K € G, isasubgroup o6, suchthah,, is K-invariantthen forg € K andg,, € Z,,»
we have

(Zy, )% = g(Zpu0)*", (3.5)
and forg, € G, we get

e@gu.i)(X> V) = (g, ) (X5 V)- (3.6)
In particular, for o = a exp(é) € G, as in(2.3)this gives

(o) (X> V) = e(expe). ) (Xs V)- (3.7

(d) If u € g is regular thenZ,,, = Giﬁ’w is Abelian andg, o v = v for each small
v eannn,) andg, € Z, .

Pr oof.

(a) Part (a) follows from the implicit function theorem appliedR¢;, x, v) = 0 with F :
n, ® g, ® g;, — gu defined by

F(n, x,v) = Panng,) (o exp(x + m(u +v) — p).

Here we use that f¥(0), given by D,F(0)) = —Panng,)Ad]_; ad}; u, has image

im D, F(0) = Panng,) Ad’_; gt = Panng,)9u = gu and therefore full rank. The prop-
erties(3.4) of n‘(fw) follow from the definition ofnfw), see(3.3), and the definition of

Ny, cf. (2.10)

(b) Is clear.

(c) To prove(3.5) and (3.6pplyg € K € G, to (3.3)and use thaPanrg,) coOmmutes
with g. Leto = aexp(é) € G, as in(2.3). Sincen,, is Ady-invariant we can deduce
(3.7)from (3.6).

(d) Letu be minimal. TherG; has locally constant dimension farin a small neighbour-

hood of 1 in g*, and therefore, sinc@il?+v c Z,, forv e annn,) small, and since
id

both, Gilj’ﬂ and by part (a) als&, ., have dimension dirg,, we getZ, , = G,,,

see alsq33]. Henceg, ov = v for g, € Z, ., v € annn,) small. The fact that

then Gil‘fﬂ is Abelian is due to Duflo and Vergri@2] and it is also a consequence of

the equality ag’* = 0 for & € g, which follows from differentiatingg,, o v = v at
gu =id. O
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Remark 3.9.

(@) The varietyG x g*)¢ is invariant under th&-action (o, u) — (gog™ 1, gu), g € G,

and invariant under the transformation u) — (o1, ).

(b) Note that with(o, 1) € (G x g“)¢ also(G,, u) € (G x g*)°. Moreover,G (o, u) <

(G x g")°¢ and is disjoint from(G,, n) if we replaceG by {exp(n),n € Un, (0)},

whereUy, (0) is a sufficiently small neighbourhood of Oriry . Sincen,, has dimension
dim G —dim G, we see that; ) (G) is the non-trivial term in the dimension formula
(seeDefinition 3.1(c))

dim, ) (G x g*)c =1 (G) +dimG.

We will make this interpretation of,, ,,)(G) more precise in the next lemma.

The following technical lemma which analyses the local structure of the space of drift—

momentum pairs is analogous to the corresponding results of PE€itknd Wulff [39]
on velocity—-momentum pair&, 1) € (g ® g*)°.

Lemma3.10. Let (o, ) € (G x g*)%, 9=, ®n,, and identifyg;’; =annng).

(a) Using the sectiom + gj, transverse taGu at 4 from Lemma 3.Ave get the following

(b)

parameterization ofG x g*)¢in a neighbourhood g x g+ (0, i) of (o, ) in (G x g*)°:
UG xgre (o, ) = {g(oe(ou) (X, v), . +v), g € Ug(id),
(X, v) € Ug,ag; (0) satisfiesmg)(x, v) = v}.

HereUg(id), Ug,eg; (0) are neighbourhoods @l in G, 0ing,, @49, respectivelyr ;)
is defined by

Tow  Ou X Gy = G Tow (X V) = (o) (X V) (U +v) — 1, (3.8)
and(g, x, v) are locally unigue modulo the action 0% (id) N Z,, , given by
8 (8 X: V) = (99, " 8 Otoun) X- 80 V)s g € Ug(id) N Zy, 0, (3.9)

whereg,, o .,v) X € 9y is defined by the equation

8uoe (o (X V)g;:l = 0€(0,11) (8 O(orpa,v) X> & © V),

Z,,visasin(2.16) andg, o v is given by(3.2). Moreover(r — Pg*)*l(O) = (G x g*)°
is locally a manifold neato, i) € (G x g*)¢if and only if (75 1) — sz)‘l(O) is locally
a manifold neal0. If u is o-split we have

8u oV =8uv, 8u O u,v) X = 8uXs 77(0,/4)()(’ V) = o exp()v. (3-10)

Let(o, 1) € (G x g*)° be regular and let = r(, ) (G) be such thatlim, ,) (G x g*)¢ =
r +dimG. Thenr < r,(G,) and near(y, v) = 0 the set(r(, ;) — Pg;)‘l(O) can be
parameterized byy, v(x, 1)), where(x, A) lies in a neighbourhood]gﬂ@Rr (0) of Oin
Ogu ®R", v 1 Ug,err(0) — g;‘; is smoothv(0) = 0, D,v(0) = 0 and the columns of
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D;.v(0) span an-dimensional subspace Bixg: (AdE™). If w is o-split thenv(x, 1) is
linear in A andr = rs(G ).

Proof. (a) follows fromLemmas 3.7 and 3.80 prove part (b) leto, 1) € (G x g*)¢ be
regular withr = r(;,)(G). Then by part (ax)n(w)—PgZ)*l(O) € 9,99}, isamanifold near
0 with dimo (7o, ) — Pgﬁ)*l(O) = r+dimg,. Since(r(, ) — Pgﬁ)*l(O) clearly contains
the vectorspacg, @ {0} < g, & gj, we can locally parameterizer( ) — Pgﬁ)—l(O) as
(x, v(x, 1)), wherey € g, andi € R" are smally(0) = 0, D,v(0) = 0, and the rank of
D, v(0)isr. Differentiating(n(w)—Pgu)(x, v(x, 1)) = 0OatOwe ge(Ad" % —id) D, v(0) =

0. As a consequenge< dim ker(Ad“ —id) = dimg,,). The last statement follows
from the fact that ifu is o-split then(3 10)holds O

3.4. Sufficient conditions for regularity

In the following proposition we present some sufficient conditions for the regularity
of drift-momentum pairs which are easy to check. In particular, we show that regular-
ity of the momentum or the drift symmetry imply the regularity of the drift-momentum
pairs. The results are similar to the case of velocity—momentum pairs of relative equilibria
[30,39]

Proposition 3.11.

(a) If u € g*isregularthen(o, w) is regular and minimal for every € G, andr ,)(G) =
dimg, ) = dimg, ), Whereo = a exp(€) as in(2.3).

(b) If o € G isregular inG then(o, ) € (G x g*)¢ is regular and minimal for every
w e gt with Ad} 1 = u, andre (G) = dimg, ) = r((w)(G)

(c) If uis o-split andnu is chosen to be invariant undc&' andAd, (whereo € G,)
then the following conditions are equivalent

(i) oisregularinG,;

(i) (o, n) € (G x g")Cisregular,

(i) (o, n) € (G x g*)©is minimal

Moreover if p is o-split and(o, ) regular thenr(g ) (G) = dim g, ).
(d) With (o, n) € (G x g9)¢also(o2, w) is regular andr,, ) (G) = o1, (G).
Proof.

(a) If wis minimal then fron(3.5), (3.7) and (3.8andLemma 3.8d) we getr (s, ) (x, v) =
av. So close tdo, 1) the variety(G x g*)¢ has dimension

d|m(a,u) (G xg )C dlmg(a M) + dimG.

SinceG'lj‘ is Abelian for . minimal by Lemma 3.8d) we have Adxpe x = x for
eachy € g, and therefor@, ) = Q- This shows that for every € G, the
drift-momentum pair(o; 1) € (G x g*)¢ is regular withr( ;) (G) = dimg ).
Since drift-momentum pair&, i) € (G x g*)¢ close to(o, ) are also regular with
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r6.0)(G) = 1w (G) = dimge,,) and byLemma 3.10b) we have ding, ) =
r6.p)(G) < dimg; ;) we conclude thato, i) is also minimal.

(b) If o is minimal thenG has locally constant dimension férin a small neighbourhood
of o in G. So close to{o} x Fixg-(Ad}) € (G x g*)¢ the variety(G x g*)°is a
trivial bundle with fibre Fix- (Ad%) isomorphic to Fig«(Ad7) over a neighbourhood
6 ~ o of o in G, and the dimension aiG x g*)° near{o} x Fixg:(Ad}) is therefore
dim G+dim G,. This shows that foreveny € g* with Ad}; 1 = p the drift-momentum
pair (o, n) € (G x g*)¢is regular withv . ,) (G) = r(G). Sincer (g, ) (G) < dimg )
by Lemma 3.1(b) and dimg,,,) < r5(G) = dimg, we haver,,)(G) = dimg, ).

(c) If uis o-split then by(3.10)we haver (s ) (x, v) = o exp(x)v wherev € g/, x € gu.
We first show that (i) implies (ii). Let be minimal inG .. From part (b) we see thét, 0)
is a regular point of G, x g;i)c With 75,0 (G,) = dimg, ). FromLemma 3.10a)
we conclude thato, 1) is a regular point of G x g*)¢ with r(5,,)(G) = dim g, ).

Now we show that (ii) implies (iii). Ifu is o-split and (o, 1) a regular point of
(G x g")°¢ with dim(,,,)(G x g*)¢ = dimG + r then byLemma 3.1(b) the variety
(G x g;‘;)c is a manifold neaxs, 0) € (G, x g;‘;)c of dimensionr + dim G, with
r=rs(G,) = dimg,. Nowlet(, i) € (G xg*)°beclosetdo, 11). Since(G xg*)°
is a manifold neafo, 1) we know thatr s ;)(G) = r, with r = dim g, ,). By Lemma
3.10b) we moreover have; ;)(G) < dimg ;). Hence ding,,) < dimge z) SO
that (o, 1) is minimal.

Finally we show that (iii) implies (i). If(o, 1) is a minimal drift-momentum pair
then dimg ) = dimg, ) for 6 € G, close too, so thato is minimal inG .

(d) Let (o, u) € (G x g*)¢ be regular. Then byemma 3.1(b) the variety(G x g*)¢
can be smoothly parameterizedgs(x, A), u(x, 1)), wherex € R", r = r(5,,)(G),
g € G,o(x, 1) = oewu)(x v(x, 1), andu(x, ) = p + v(x, A). Since byRemark
3.9a) with any(o, ) also(o™1, ) € (G x g*)¢ we see that neap 1, ;1) the variety
(G x g*)¢is parameterized smoothly lay(o(x, 1)), u(x, A)). So(o~1, w) is regular
andr,-1,)(G) = r(o.u)(G). O

4. Persistence of relative periodic orbits

In Section 4.we present our main resuftheorem 4.2on persistence of non-degenerate
relative periodic orbits with drift-=momentum pairs which are regular modulo isotropy to
relative periodic orbits with the same reduced spatio-temporal symmetry group. This ex-
tends results of Patrick et dB0,32,39]on relative equilibria to relative periodic orbits.
Afterwards, inSection 4.2we consider persistence to relative periodic orbits with smaller
reduced spatio-temporal symmetry group.

4.1. Symmetry preserving persistence

In this section we present our main result, a persistence result for relative periodic orbits
which are non-degenerate and have regular drift-momentum pairs modulo isotropy. First
we define what we mean by a regular drift—=momentum pair modulo isotropy.
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Definition4.1. Letp € Plie onarelative periodic orbit dR.1)with momentumu = J(p),
drift symmetryo € G, and isotropy subgrou@ ,, let L = N(G,)/ G, be the symmetry
group acting on the fixed point space FiXG ,) and letl denote the Lie algebra df. Let
uL = ul, where we considémlasX,-invariant subspace of seeRemark 2.1andletr € L
represent € G. We say thafP hasregular drift-momentum paifregular drift, regular
momentuhmodulo isotropyif (o, uL) € (L x 1*)Cis regular ¢ € L is regularu € I*
is regular) in which case we defimg; ,) (G, G) ‘= 7, u) (L) (r6(Gp, G) i= 14 (L),
ru(Gp, G) i=ry (L)),

Propositions 3.3 and 3.1dan be used, witliz replaced byL, to computer, ., )(L),
re (L) andr, (L). Now we can formulate a persistence result for relative periodic orbits
with regular drift-=momentum pairs modulo isotropy.

Theorem 4.2. Let p = o~ 1®1(p) lie on a relative periodic orbitP of (2.1) which is
non-degenerate and has regular drift—-momentum paip) modulo isotropy and energy
H(p) = 0. Then the following statements hold true

(@) Letr = r,)(Gp, G). Then there is arir + 1)-dimensional smooth family of relative
periodic orbitsP(A, E), parameterized by € R" and energyE, with isotropy sub-
group G p, relative period close td, drift symmetry (1, E) close too and momentum
u, E) =J3(p(x, E)), p(r, E) € P(x, E), close tou such thatp(0) = p, P(0) = P
o(0) = o, u(0) = u, and there are no other relative periodic orbits with the same
isotropy and relative period: 1 nearP.

(b) Let MRgpo be the submanifold of formed by the relative periodic orbits frofa)
and letMrpo(G ) = FiXpppo(Gp). ThenMgpo(G ) is a symplectic submanifold of
Fix (G p) if and only if g is minimal inl* andl, ) =1,

(c) The submanifoldUrpo of M is symplectic if and only if the assumptiongiof hold
and the momentum isotropy algebga of the relative periodic orbit lies in the Lie
algebralL N(G ) of the normalizeiN(G ) of G,: 9, S LN(G)). In this case there
is a relative periodic orbit for any energy—momentum pdit /1) € R & g* close to

O, w).

Proof.

(a) For simplicity, replace\ by Fixa(G ) so thatG andL coincide. ByProposition 2.9
the persistence problem reduces to solving the fixed point equAtion= v on gy,
wherell(v) |sfrom(2 15) ByLemma 2.8ve canwritel1(v) asl1(v) = g(v)(v+u)—u,
Whereg(u) € ZM ,andg(v) ~ o~ for v small. Note that with(o, ) € (G x g*)¢ also
(01, ) € (G x g*)Cis regular byProposition 3.1(d). By Lemma 3.8a) there is some
E(v) = 0withg(v) = o—le(g_l’m (&(v), v) and&(v) is smooth inv. So we havdl(v) =
(o1, (W), v), wherer,-1 ) is from (3.8). Lemma 3.1(b) implies that for each
small x there is an--dimensional manifold(y, 1) of solutions tor ;-1 ) (X, v) = v.
Since D,v(0) = 0 by Lemma 3.1(b) the equation

x =§&0W(x, 1))
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can be solved fog(A). This gives am-dimensional familyw(L) := v(x(1), A) of (2.15)
and withProposition 2.9roves (a).

(b) To simplify notation replaceéM by Fix,(G,) andG by L so thatG, is trivial. By
the tangent space decompositionTdfeorem 2.2a) we have7, M = T & N, with
T=To®T1® T2, N = No®N1® N2, whereTo @ T1 >~ ¢, T1 =~ 9/, To = Oy,
No =~ g, andTz ® N2, N1 andTo © Np are symplectic. So we get

id
TMzo=Too o oo (o, 0 ) ImDu0 @ 2 @1)

where we used bundle coordinates on the right-hand side and (@ Benotes the
image of Dv(0) in Np ~ g;,- Since ImDv(0) < Fixg;; (Ad4"™) by Lemma 3.1(b) and
sinceT1, N1, To @ No and T2 @ N> are symplectic, the last two spaces with standard
symplectic form (byTheorem 2.£a)) the spacd , Mgrpois symplectic if and only if
g, = Fixgﬁ (AdL™) = Im Dv(0). These equalities hold if and onlydfs, ) = 9, and
r = dimg,. Let (6, 1) € (G x g*)¢ be close ta(o, 1). By Lemma 3.1(b) we have
r6.0)(G) = rs(Gp). Sincer = ri ;)(G) andrs(G,) < dimg, we get dimg,, <
dimgp. This implies thaj is minimal ing*.

(c) If the isotropy groupG ), is continuous thei4.1) remains valid, and bjRemark 2.3
the spacefp & N is still a symplectic space, but now we havg ~ (g,/9,) and
No = (9./9p)*. As in part (b) we know that IMDX0) C 1% =~ Fixx,(G,) S No.
For Mrpoto be symplectic the former two inclusions need to be equalities. We have
ImDv(0) = I}, if and only if the assumptions in part (b) are satisfied. Moreover, the
condition(g, /dp)* = FiX(g,/g,)* (G ) is satisfied if and only iy, € LN(G ). O

4.2. Symmetry breaking persistence

In this section we treat persistence to relative periodic orbits with smaller reduced
spatio-temporal symmetry group. We allow the bifurcating relative periodic orbit to have
a smaller isotropy groupwhich is aregular subgroupof the isotropy group of the origi-
nal relative periodic orbit (as defined Definition 4.3, and we allow for relative period
multiplying.

Letp = o~ 1®1(p) € Plie onarelative periodic orbit ¢R.1)with momentumu = J(p),
drift symmetryo € G, and isotropy subgroug .

Definition 4.3 (cf. [40, Definition 7.1). The subgroupf;p of G, is aregular subgroup of
G, if the following implication holds:

x€z2Gp)Ngy= x €.

Choose a regular subgroﬁbp of G,,. To study persistence to relative periodic orbits with
isotropy containin@p we restrict, as irRemark 2.1the dynamics to the flow-invariant
symplectic manifoldt = FixM(Gp). The symmetry group acting on the fixed point
spaceM = Fix((G,)isL = N(G,)/G ,. As before denote the Lie algebraloby |. The
fact thatf;p is a regular subgroup &, means that., is finite. ThereforeTheorem 2.2
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on the bundle structure of a neighbourhood of a relative periodic orbit can be applied to
M. The drift symmetry of our relative periodic orbiP may not necessarily lie if (for

an example, seBection 5.3 and even if it does, it may not respect the symmetriefs,;n

We therefore may have to replagédy another spatio-temporal symmetry@fvhich lies

in L. This might increase the relative period. Spatio-temporal symmetriesadfich fit to

the subgroupﬁp are callecf}p—admissibleas detailed in the following definition.

Definition 4.4. Let p = o~ 1®1(p) € P, u = I(p) and IetG,, be a subgroup of7,. We
say that the spatio-temporal symmedry= o—‘gp € X,LeN, g, e G, of P(with respect
to p) is G ,-admissibléf 6 € N(G ).

Note that every eIemem‘fg,,, ¢ eN, g, € G, of the spatio-temporal symmetry group
X of P (with respect t) is G ,-admissible and that" is Gp—admissible for every subgroup
G, of G, wheren € N is such that" = id, see(2.3). The next definition introduces the
notion of non-degeneracy modufb,,.

Definition 4.5. Let P be a relative periodic orbit containing = o~ 1®1(p), let G,, be
a regular subgroup o7, and lets = a‘fg,, be aé,,-admissible drift symmetry of,
where? € N, g, € G,,. ThenP is called non-degenerate moduin,, when considered
as relative periodic orbit of relative periaddand with drift symmetng, if g;lB‘i does

not have eigenvectors with eigenvalue 1 which lie in/ﬁi«}ép). Here B; is the block in
B = o~ 1D®1(p) defined inProposition 2.5

Now we introduce the notion of drift-momentum pairs which are regular mcraylby
extendingDefinition 4.1

Definition 4.6. Let P, u, o, G, andL = N(G,)/G , be as above. Let = o'g,, where
teN,g,eGp be aGp-admissibIe drift symmetry dP. Identify 6 with 6. € L and let
uL = u|) where we embedinto g as described iRemark 2.1

We say that the drift—-momentum pdit, ) (the drift&, the momentuny) of P when
considered as relative periodic orbit of relative peri@shd with drift symmetnyg is regular
moduloép if (6L, uL) € (L x 1*)Cisregular 6. € L is regular,u. € I* is regular) in
which case we defings ) (G, G) := 1 ) (L) (r6(Gp, G) =15 (L), ru(Gp, G) =
Fup (L))

We are now ready to state our result on symmetry breaking persistence.

Theorem 4.7. Letp = o 1d1(p) lie on a relative periodic orbi> of (2.1)with momentum
w = J(p) and energy(p) = 0.LetG , be aregular subgroup af , and assume that =
o'gp is G p-admissible wheré € N, g, € G ,. Assume thaP is non-degenerate modulo
G » when considered as relative periodic orbit of relative periodith drift-symmetrys

and that(a, w) is a drift-momentum pair which is regular modtﬁ:‘q,. Then the following
statements hold true
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(@) Letr = r(;,,m(('\},,, G). There is an(r + 1)-dimensional smoothly parameterized family
of relative periodic orbits?(x, E), > € R”, with isotropy containingﬁ p» relative period
dividing ¢ (using the time-reparameterization ®heorem 2.% and drift-momentum
pair close to(a, 1) nearP(0) = P and there are no other relative periodic orbits with
this property neafP.

(b) Let MRgpobe the submanifold of1 formed by the family of relative periodic orbits of
(a)and Iet/\/lRpo(G,,) = FixMRPO(Gp). Then/\/lRpo(G,,) is a symplectic submanifold
of Fix (G ) if and only ifye is minimal inl* andl, ) =l

(¢) The manifoldMrpo € M is symplectic if and only if the assumptiongiofhold and
Oy € LN(G)p).

Proof. The regularity assumption oﬁp implies thatL , is finite so thatTheorems 2.2

and 2.4on the bundle structure near relative periodic orbits and Hamilton’s equations in
bundle coordinates can be appliedAAm:z FixM(G,,). The equation determining relative
periodic orbits neap € P in M therefore has the forr{2.15) We treatP as a relative
periodic orbit onM with drift symmetryc, € L and relative period. The maplT from
(2.15) has to be modified accordingly has to be replaced bzygg,, and ¥ o by ¥ 0.
Proposition 2.%hen still applies to this case of broken spatio-temporal symmetry, and
makes the proof of the theorem analogous to the prodhearem 4.2 O

Remark 4.8.

(a) The assumptions dtheorem 4.{b) are satisfied ifx is minimal inl*, g, = id and
¢ = n, where we decompose= « exp(§) with " = id as in(2.3). This special case
was treated if42, Corollary 4.8]

(b) [42, Theorem 4.9]s a special case dfheorem 4.7whereG , is finite andu is split
and minimal moduldG .

(c) Theorem 4.7s similar to[40, Theorem 7.2pbn symmetry breaking persistence of
relative equilibria.

The following example is a simple illustration hdvineorem 4.%¢an be applied. For more
examples, seSection 5

Example 4.9. Let G = O(2). Then everyw € g* is minimal. A non-degenerate relative
periodic orbitP with momentumu = 0, zero energy and drift symmetsye O(2) \ SO(2)

is a discrete rotating wave which is isolated in momentum spaggisihon-degenerate as
2-periodic solution then byheorem 4.7t persists as modulated rotating wave with relative
period close to 2 for every small energy—momentum p&ijru) # O.

5. Application: oscillations of a deformable body in afluid

In this section we illustrate how to apply the results of this paper to a specific symmetric
Hamiltonian system. As our example we have chosen, [@4ina finite dimensional model
for the dynamics of a deformable body in an ideal irrotational fluid. The model extends the
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well known Kirchhoff model for the motion of a rigid body in a flu[8,17,19]and the
‘affine’ or ‘pseudo’-rigid body model used in elasticity thed8y11,35,38]

We allow configurations that are obtained from orientation and volume preserving linear
deformations and translations of a reference body. The configuration space for this system
is therefore the special affine group S8f = SL(3) x R3 of R3, where SI(3) is the group
of invertible linear transformations &2 with determinant 1 and the semi-direct product
is obtained from the natural action of &) onR3. The dynamics of the system are given
by a HamiltonianH on the phase spadg SAff(3). We assume that the reference body is
a sphere. Then the deformed configurations are always ellipsoids.

5.1. Symmetries and conserved quantities

Since the reference body is spherically symmetric the HamiltoAiagminvariant under
the action of S@) on 7* SAff(3) which is induced from its natural action on the right of
SL(3) (extended trivially to SAft3)):

B-(S,s) = (SBLs), (S,s) e SAff(3), Be SO®J).

These are the ‘material’ or ‘body’ symmetries of the system. We also assume that the
system is invariant under rotations and translation®%fi.e. the natural action of SB)
on7* SAff (3) induced from its action on the left of SA):

(A,a)-(S,s) =(ASa+ Ay, (S,s5) € SAff(3), (A, a) € SE(3) = SO3) x R3.

These are the ‘spatial’ symmetries of the system. This assumption implies that there are
no external forces such as gravity acting. In particular, the body is ‘neutrally buoyant’ and
has coincident centres of mass and buoyancy. It is natural also to assume that the system
is invariant under the action of the inversion symmetig in O(3) acting simultaneously

on the left and right of SAff3). Denoting the diagonally embedded inversion operator in
0O(@3) x O(3) by x we have:

k-(8,5) =(S,—s), (S,5) € SAff(3), k= (—id, —id) € O(3) x O(3).

Note that the action of-id on the left or right alone does not preserve S&ff Together
the body and spatial symmetries and refleciiagrenerate a semi-direct product

G =75 x (SER)L x SO3)R)

(here the indices L and R stand for left and right actions, respectively). This group is the
symmetry group of the system.

5.2. Spherical equilibrium and non-linear normal modes

Assume, as 1], that the spherical configuration with zero momentpym= ((id, 0),
(0, 0)) in SAff (3) x saff(3)* is an equilibrium configuration. This has conserved momentum
w = 0 and its isotropy subgroup i§, = O(3)p, where G3)p = Z5 x SO)p and
SORB)p = {((g,0), g) € SE3). x SOB)R : g € SOI)} is the diagonally embedded copy
of SO(3) in SE(3). x SO(3)R.
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Fig. 3. Ellipsoidal oscillating normal mode.

In [41] it is shown that near a non-degenerate spherical equilibfipat i1, = O there
are three families of periodic solutions (non-linear normal modes), two of them with finite
isotropy. One of the periodic solutions with finite isotropy iscabbic normal modewith
symmetry pairX,, G ,) isomorphic to

(Xn, Gp) = (T x Z5, D2 x Z5), n=3.

HereDs, is the subgroup of S@)p consisting of rotations by about each of three mutually
perpendicular axes. The grodpis the subgroup of order 12 in $8)p consisting of all
rotations which preserve a tetrahedron. It can be generat®d tygether with an element
« of order 3 corresponding to a rotation by/3 about a diagonal of the cube, deig. 3
The drift symmetrys of the non-linear normal mode és= « and hence satisfies= 3.

This periodic solution has momentym= 0 and can be described as a ‘pulsating cube’.
At all times the body is ellipsoidal (which is wh§,, always containd, x Z%) and its
principal axes have fixed directions in both body and space. However the lengths of the
principal axes vary periodically, and the role of the longest principal axis is taken by each
of the three in turn, with a:2/3 phase-shift between them, déig. 4. The spatio-temporal
symmetryo corresponds to rotating the body by/3 about an axis trisecting the three
principal axes.

A

~_/ =2

Fig. 4. Spatio-temporal symmetsyof the pulsating cube normal mode.



C. Wulff/ Journal of Geometry and Physics 48 (2003) 309-338 335

Fig. 5. Pulsating cube RPOs of Type 1.

5.3. Relative periodic orbits

Let r be a rotation byr in D, = SO(3)p N G,. In [41] it is shown, using the persistence
result[42, Theorem 4.9]see alsdRemark 4.8)) for minimal momenta modulé?,, for
the subgrou;ﬁp .= Z3 of G, that the normal mod@ perturbs to a four-dimensional
family of relative periodic orbits with relative period 3 and isotro@y = Z5. Herel =
I, =s02)L &R @ so2)r. This is an example wheie ~ o is notG,,-admissible, but
6 ~ o2 = id is. The persisting relative periodic orbits rotate around and translate along
one of the principal axes (the rotation axisf seeFig. 5. The details fronj41] can be
found in Table 1 In this tableép C G, denotes the isotropy group of the bifurcating
relative periodic orbitsﬁp C ¥, denotes their isotropy groug; C X, their reduced
spatio-temporal symmetry group their relative periodg € G their drift symmetry and
é = (§L, éT, éR) € g = so3)L d Rz d so(3)r the drift direction of the bifurcating relative
periodic orbits. As can be seen fromable 1this family of bifurcating relative periodic
orbits contains two three-dimensional subfamilies with higher isotropy, one which consists
of relative periodic orbits which rotate but do not translate (case b) and one which consists
of relative periodic orbits which translate, but do not rotate (case c).

With our persistence result on symmetry breaking persistence of relative periodic orbits,
Theorem 4.7we can show that there is a second family of relative periodic orbits nearby
with relative period close to one. The péir = «, 1 = 0) is a regular drift-=momentum pair
because € G is minimal withg, = so(2). ® R & sa2)r. So byTheorem 4.2here is a
four-parameter familyP(x, E), A € R3, of relative periodic orbits close 8 with relative
period close to 1 and drift symmeteyx, E) close toa. The relative periodic orbits of this

Table 1
Symmetries of Type 1 relative periodic orbits bifurcating from the cubic oscillafglis  andz are two different
non-identity elements i, = SOR)p N G,

G, b 14 & £
) z3 3 3 expé) ErllLllEr ||
(b) Z5 x 7y x L 3 expé) grllsLlIT 61 =0
© 7y x T5* Z5 x Zx* 3 expé) =& =04t
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Fig. 6. Pulsating cube RPOs of Type 2.

Table 2
Symmetries of Type 1 relative periodic orbits bifurcating from the cubic oscillafiglls  andz are two different
non-identity elements i; = SOB@)p N G,

G, b ¢ & 3
@ id 24 1 o exp(é) ERIIELI1ET o
(b) zs 5 x 2% 1 aexp(é) ERlIELllor &7 = 0

family rotate around and translate along the rotation axig o&. the cross-diagonal of the
cube, seéig. 6.

This family contains a three-parameter family of relative periodic orbits freaith
relative period close to 1, isotropfyp = Z& and drift symmetry close ta. To see this let
Gp =175 ThenL = N(G,)/G, = O(3)L x OB)R, | = Fixg(G,) = so3)L ®sa3)r and
lo = SO(2)L ds0(2)Rr so thatr is minimal inL andTheorem 4. &pplies. The symmetry data
of Type 2 family of relative periodic orbits and its subfamily are summarizékhlvie 2
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